Eigen--Matrix

本文详细介绍了Eigen库中矩阵和向量的定义、构造和操作方法,包括静态和动态大小的矩阵向量,以及如何进行赋值和重新指定大小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在Eigen中,所有的矩阵Matrix和向量Vector都是由Matrix类构造的。向量只不过是矩阵的特殊形式,只有一列(列向量)或者一行

Matrix模板类有6个参数,其中前三个参数是必须的。前三个参数如下:

Matrix<typename Scalar,int RowsAtCompileTime,int ColsAtCompileTime >
Scalar 是 标量类型,取值可以是 float ,int double 等。
RowsAtCompileTime 和 ColsAtCompileTime 是在程序编译时就已经知道的矩阵的行数和列数。

Eigen 提供了一些常用的 定义好的类型。比如:

typedef Matrix<float,4,4> Matrix4f ;

在Eigen中,列向量是默认向量,在不特别说明的情况下,向量Vector就是指的列向量。在Eigen中定义了列向量:

typedef Matrix<float,3,1> Vector3f ;

Eigen也定义了行向量:

typedef Matrix<int ,1,2 > RowVector2i ;

如果矩阵的尺寸在编译的时候是不确定的,而在运行的时候才能确定,Eigen提供了定义动态大小的方法。比如非常好用的:

typedef Matrix<double ,Dynamic,Dynamic > MatrixXd;  

MatrixXd定义了任意行数和列数的矩阵,可以在运行时确定。

类似地,对于向量有:

typedef Matrix<int ,Dynamic ,1> VectorXi ;

也可以对于一个维度确定,而指定另外一个维度是动态大小的。

Matrix<float,3,Dynamic> 矩阵的行数是 3,列数不确定。

矩阵的构造,Eigen提供了默认构造函数。

Matrix3f a;
MatirxXf b;

a 是一个3 x 3的矩阵,每个元素都是未初始化的float。
b 目前是一个 0 x 0 的矩阵。

带参数的构造函数,对于矩阵,行数在列数前面,对于向量,只有向量的大小。

MatrixXf a(10,15);
VectorXf b(30);

a 是一个 10 x 15的动态大小的矩阵,分配了内存但是没有初始化。
b 是一个动态大小的向量,大小是30,分配了内存但是没有初始化。
对于维度在 4 以下的矩阵和向量,都定义了固定大小的类型。

例如可以使用,

Vector2d ; Vector3d  ; Vector4d; 等来定义向量。
Matrix2f ;Matrix3f ; Matrix4f ; 等定义矩阵。

以使用逗号初始化方式给矩阵和向量赋值。例如:

Matrix3f m;
m << 1,2,3,
    4,5,6,
     7,8,9;

这样就将上述值赋给了矩阵,在Eigen中矩阵默认的存储方式是行优先,就是先存储行。

Eigen支持对动态大小的矩阵和向量重新指定大小。
rows() , cols() , size() 分别返回行数,列数和 元素的个数。
resize() 则可以重新指定矩阵大小。
 
实例如下:

#include <iostream>
#include <eigen3/Eigen/Dense>

using namespace Eigen;

int main(int argc ,char** argv)
{
    MatrixXd m(2,5);
    m.resize(3,4);
    std::cout<<"The matrix m is of size "
             <<m.rows()<<" x "<<m.cols()<<std::endl;
    std::cout<<"It has"<<m.size()<<" coefficients"<<std::endl;

    VectorXd v2();
    v.resize(5);
    std::cout<<"The vector v is of size "<<v.size()<<std::endl;
    std::cout<<"As a matrix, v is of size "
            <<v.rows()<<" x "<<v.cols()<<std::endl;
    return 0;
}

运行结果:
在这里插入图片描述
赋值和resize

对于动态大小的矩阵,使用操作符 = 的时候,左边的矩阵大小会根据右边的矩阵大小改变

例子如下:

#include <iostream>
#include <eigen3/Eigen/Dense>

using namespace Eigen;

int main(int argc ,char** argv)
{
    Matrix2f a(2,2);
    std::cout<<"a is of size "<<a.rows()<<"x"<<a.cols()<<std::endl;
    MatrixXf b(4,4);
    a = b;
    std::cout<<"a is now of size "<<a.rows()<<"x"<<a.cols()<<std::endl;
    
    return 0;
}

结果如下:
在这里插入图片描述
固定大小和动态大小
对于小尺寸的矩阵,使用固定大小的方式,时间开销要小的多。
  
Eigen 定义了相当多的方便使用的类型,其中还包括复数类型
MatrixNt ,VectorNt ,RowVectorNt 。
N : 2,3,4,X ;
t : i ,fd ,cf cd;

转载自:
博主:山里的小勇子
博文地址:https://www.cnblogs.com/wangxiaoyong/p/8903505.html
来源:博客园

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值