基于OpenCv的图像Harris角点检测

⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计3077字,阅读大概需要3分钟
🌈更多学习内容, 欢迎👏关注👀【文末】我的个人微信公众号:不懂开发的程序猿
个人网站:https://jerry-jy.co/

❗❗❗知识付费,🈲止白嫖,有需要请后台私信或【文末】个人微信公众号联系我

基于OpenCv的图像Harris角点检测

任务需求

角点检测(corner detection)是计算机视觉系统中获得图像特征的一种方法,由于角点检测的实时性和稳定性,所以角点检测广泛应用于运动检测、图像匹配、视频跟踪、三维建模和目标识别等领域。角点作为一种特征点,角点检测也被称为特征点检测。

在这里插入图片描述
在这里插入图片描述

任务目标

1、掌握Harris角点检测的简单步骤

2、掌握基于OpenCv进行Harris角点检测

3、掌握基于亚像素角点检测

任务环境

1、jupyter开发环境

2、OpenCv

3、python3.6

任务实施过程

一、Harris角点检测

Harris角点检测算法是Harris和Stephens于1988年在Moravec算法的基础上提出基于信号的点特征提取方法,其基本思想为:使用一个固定窗口在图像上进行任意方向上的滑动,比较窗口中的像素灰度在窗口滑动前与滑动后的变化程度,如果在任意方向上的滑动都有着较大灰度值的变化,那么我们可以认为该窗口中存在角点。

在这里插入图片描述

Harris角点检测的一般步骤是根据图像窗口平移产生灰度变化得到角点响应函数R,对角点响应函数R进行阈值处理和非最大化抑制,得到选择局部区域算子最大的点作为最终的特征点。

在这里插入图片描述

1.导入所需要的工具包和图像
import cv2 # 导入opencv
import matplotlib.pyplot as plt # 导入绘图模块
import numpy as np # 导入numpy库
from utils import im_show # 导入显示图像函数
# 绘制图像直接展示,不用调用plt.show()
%matplotlib inline 
# 用来正常显示中文标签
plt.rc('font',family="SimHei")
# 读取图像
img = cv2.imread(r'./experiment/data/qp.png')
# 将图像转换成灰度图像
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# 设置画布大小
plt.figure(figsize=(6,6
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不懂开发的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值