AI Foundation:SAP BTP 上的一站式 AI 开发工具箱

在数字化转型竞赛愈演愈烈的当下,企业开发团队往往面临三大挑战:模型繁多却难以落地、业务数据碎片化导致效果打折、运维链路割裂带来成本激增。SAP 在 2023 年发布的 AI Foundation 旨在把这些痛点打包进一个可落地、可扩展、可治理的统一平台,帮助开发者用最短路径把 AI 能力嵌入业务流程。本文将结合官方技术蓝图与真实案例,系统剖析 AI Foundation 的核心组件、开发范式与最佳实践,并分享本人在项目落地过程中的踩坑心得。


目录

  1. AI Foundation 的定位与价值

  2. 核心组件详解

    • SAP AI Core
    • SAP AI Launchpad
    • Generative AI Hub
    • SDK 与 API 生态
  3. 端到端开发流程示范

  4. 真实场景案例研究

  5. 项目落地的常见陷阱与治理策略

  6. 结语:面向未来的 AI 基座


AI Foundation 的定位与价值

SAP 官方将 AI Foundation 定义为 all-in-one toolkit,它把 模型训练、推理、监控、合规治理 整合在一条流水线上,为开发者提供统一入口与服务目录。(community.sap.com)
与传统 AI 平台侧重科研或离线分析不同,AI Foundation 的设计哲学是 “业务优先”

  • 直接运行在 SAP BTP,天然握有 ERP、SCM、CX 等系统沉淀的大量结构化数据;
  • 核心服务内置 企业级合规与可观测能力,满足 GDPR、ISO 27001 等审计要求;
  • 即插即用的 SDK 和 API 降低语言门槛,支持 PythonJavaScript 及低代码调用。(api.sap.com, github.com)

通过这些设计,团队可以 用云原生方式统一管理多语言、多模型、多租户的 AI 工作负载,大幅降低开发与运维成本。


核心组件详解

SAP AI Core:模型运行时与工作负载调度器

SAP AI Core 负责 训练、推理、批处理与定时重训练 的底层运行时管理,其本质是封装在 Kubernetes 之上的多租户算力调度引擎:

  • 容器化执行环境:支持 Docker 镜像自定义,GPU/CPU 配额精细控制。(help.sap.com)
  • 事件驱动工作流:YAML 描述训练、评估、部署等节点,支持回滚与超时策略。(help.sap.com)
  • 模型与数据版本化:与 S3 兼容对象存储、Git repository 深度集成,保证可追溯。

在实践中,AI Core 把模型生命周期拆分为 Scenario → Version → Execution 三层,不同团队可在同一租户下并行迭代,而不必担心资源冲突。

SAP AI Launchpad:可视化控制塔

如果说 AI Core 是发动机,AI Launchpad 就是驾驶舱。它提供 浏览器 UI 与 REST API,方便数据科学家、AI Ops 与业务分析师协同:

  • 图形化监控 执行日志、指标与告警,支持即时重启或缩放推理容器。(help.sap.com)
  • 项目级 RBAC 与密钥管理,保障跨团队协作安全。(help.sap.com)
  • Prompt Editor & Playground:内置 Generative AI Hub,让业务同学通过拖拽就能调优 LLM prompt。(help.sap.com)

Generative AI Hub:可信的 LLM 管理中心

大模型的接入往往伴随数据泄漏、版权与伦理风险。Generative AI Hub 在 AI Launchpad 与 AI Core 之上叠加一层 模型治理

  • 集成 OpenAI、Anthropic、Meta Llama 3、Mistral 等主流 LLM,并通过策略路由选择最优模型。(wsj.com)
  • Prompt 版本控制 与 A/B 对比实验,帮助团队量化不同模板对业务指标的提升。(help.sap.com)
  • 内置 内容审核 API 与 Token 计费监控,防止越权调用和成本失控。

SDK 与 API 生态

  • AI Core SDK / Generative AI Hub SDK:面向 Python 的高阶封装,一行代码提交训练、生成或评估任务。(github.com)
  • @sap-ai-sdk/foundation-modelsJavaScript / TypeScript 包,支持在 Node 服务或 SAP UI5 前端直接调用 LLM。(npmjs.com)
  • API Business Accelerator Hub 提供超过 50 个预构建 AI API,例如 Document Information ExtractionImage Classification 等,可即插即用。(api.sap.com)

端到端开发流程示范

以下示例演示如何在 AI Foundation 上 从业务需求到生产部署

  1. 需求场景:供应链团队希望预测 90 天内物料缺货风险,并用自然语言解释预测原因。

  2. 数据准备:通过 SAP Datasphere 打通 S/4HANA 与 Ariba 的库存、采购订单数据,存入 S3

  3. 模型训练

    • 训练脚本封装进 Docker 镜像,Push 到 SAP BTP Kyma Registry;
    • 在 AI Core 中编写 workflow.yaml,定义数据加载、特征工程、XGBoost 训练、推理镜像生成四个步骤;
    • 提交 Execution,并在 Launchpad 监控 GPU 使用率、训练指标。
  4. 解释生成:在 Generative AI Hub 的 Prompt Editor 中,调用 Llama 3,输入模型输出的 top features,生成中文解释。

  5. 服务部署

    • AI Core 自动生成 serving.yaml,把模型暴露为 REST Endpoint;
    • 使用 SAP API Management 创建 API Product,加入 OAuth2 安全策略。
  6. 业务嵌入:在 Fiori 应用里调用上述 API,展示风险得分与解释文本,同时允许采购专员点击 一键下单

整个流程无需手动管理 Kubernetes,也不必关心 LLM 的计费与合规,让团队真正专注于业务价值创造。


真实场景案例研究

案例一:全球快消企业的智能需求预测

一家跨国快消公司把 AI Foundation 部署在 AWS Frankfurt 区域,利用 AI Core 训练 Prophet + LLM 组合模型,对 1200 个 SKU 做滞后 180 天的需求预测,准确率提升 18%。(leverx.com, stratserv.co)

预测结果通过 Generative AI Hub 汇总为自然语言洞察,并写入 SAP Analytics Cloud 仪表板,业务用户反馈:报告编制时间由 4 小时降至 20 分钟。

案例二:Joule Copilot 在 ABAP 开发中的应用

内部 IT 团队把 Joule 集成进 ABAP Cloud IDE。开发者输入业务描述,例如 生成销售订单增强,Joule 自动生成 ABAP RAP BO + Unit Test,初版代码即可通过 70% 以上的 ATC 规则。(sap.com, sap.com)

该功能依赖 Generative AI Hub 后端的 LLM 路由和 Prompt 模版,由 AI Core 托管微调版本,保证了企业代码规范的一致性。

案例三:多 AI 工具协同的客服自动化

在最新的互联演示中,Joule 可以把处理中的工单转交给 Microsoft Copilot,后者再触发 SAP Build Process Automation 自动申请折扣,构建出跨系统的 AI 协同链。(theaustralian.com.au)


项目落地的常见陷阱与治理策略

陷阱影响建议治理手段
只关注模型精度,忽略数据版权法务风险、不可商用通过 Generative AI Hub 的内容审核 API 做实时合规检查(help.sap.com)
没有限制 Prompt Token 长度成本失控在 Launchpad 设定组织级配额与自动熔断阈值(help.sap.com)
各团队自行部署 Notebook 环境资源浪费、版本冲突利用 AI Core 的多租户功能统一调度,设定 Label 隔离
忽视模型漂移监控预测效果衰减借助 AI Launchpad 内置的监控面板与自定义 Webhook 做 Auto-Retrain(help.sap.com)

结语:面向未来的 AI 基座

AI Foundation 不仅把 AI Core、AI Launchpad、Generative AI Hub 和丰富的 API 整合为统一体验,也通过 云原生、可观测、合规治理 三大特性,为企业级场景提供了坚实的 AI 基座。面向未来,随着 SAP Vector Engine、HANA Cloud 与外部开源 LLM 的深度集成,开发者将能够更加轻松地构建 RAG(检索增强生成)多智能体协作 等高级模式,加速业务流程的智能重塑。(discovery-center.cloud.sap, theaustralian.com.au)

行动指南:评估现有 AI 项目时,可先梳理数据主干和合规需求,结合 AI Foundation 的内置能力做差距分析;随后以可观测、可演进的方式逐步迁移模型,让 AI 真正成为业务增长的发动机。


参考资料

  1. SAP Community - AI Foundation, SAP's all-in-one AI toolkit for developers (community.sap.com)
  2. SAP Help - Generative AI Hub in SAP AI Core (help.sap.com)
  3. SAP Help - What Is SAP AI Core? (help.sap.com)
  4. SAP.com - Business AI & Generative AI Hub (sap.com)
  5. SAP API Hub - AI Core API (api.sap.com)
  6. SAP Learning Journey - AI Foundation on SAP BTP (learning.sap.com)
  7. SAP Help - AI Launchpad User Guide (help.sap.com)
  8. SAP.com - Joule Copilot (sap.com)
  9. Help.sap.com - AI Launchpad Service Plans (help.sap.com)
  10. LinkedIn Blog - Introduction to SAP AI Core (linkedin.com)
  11. Stratserv Blog - AI Foundation on SAP BTP (stratserv.co)
  12. YouTube - AI Foundation Orchestration Workflow (youtube.com)
  13. LeverX - SAP AI Core & AI Launchpad Overview (leverx.com)
  14. GitHub - ai-sdk-js foundation models (github.com)
  15. NPM - @sap-ai-sdk/foundation-models (npmjs.com)
  16. SAP Discovery Center - Generative AI Reference Architecture (discovery-center.cloud.sap)
  17. Wall Street Journal - SAP Expands Partnerships With Big Tech in AI Push (wsj.com)
  18. The Australian - Race on to build AI tools that talk to each other (theaustralian.com.au)

这份工具链与方法论,期待助你在 SAP 生态中轻松驾驭 AI 潮流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汪子熙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值