在数字化转型竞赛愈演愈烈的当下,企业开发团队往往面临三大挑战:模型繁多却难以落地、业务数据碎片化导致效果打折、运维链路割裂带来成本激增。SAP 在 2023 年发布的 AI Foundation 旨在把这些痛点打包进一个可落地、可扩展、可治理的统一平台,帮助开发者用最短路径把 AI 能力嵌入业务流程。本文将结合官方技术蓝图与真实案例,系统剖析 AI Foundation 的核心组件、开发范式与最佳实践,并分享本人在项目落地过程中的踩坑心得。
目录
-
AI Foundation 的定位与价值
-
核心组件详解
- SAP AI Core
- SAP AI Launchpad
- Generative AI Hub
- SDK 与 API 生态
-
端到端开发流程示范
-
真实场景案例研究
-
项目落地的常见陷阱与治理策略
-
结语:面向未来的 AI 基座
AI Foundation 的定位与价值
SAP 官方将 AI Foundation 定义为 all-in-one toolkit
,它把 模型训练、推理、监控、合规治理 整合在一条流水线上,为开发者提供统一入口与服务目录。(community.sap.com)
与传统 AI 平台侧重科研或离线分析不同,AI Foundation 的设计哲学是 “业务优先”:
- 直接运行在 SAP BTP,天然握有 ERP、SCM、CX 等系统沉淀的大量结构化数据;
- 核心服务内置 企业级合规与可观测能力,满足 GDPR、ISO 27001 等审计要求;
- 即插即用的 SDK 和 API 降低语言门槛,支持
Python
、JavaScript
及低代码调用。(api.sap.com, github.com)
通过这些设计,团队可以 用云原生方式统一管理多语言、多模型、多租户的 AI 工作负载,大幅降低开发与运维成本。
核心组件详解
SAP AI Core:模型运行时与工作负载调度器
SAP AI Core 负责 训练、推理、批处理与定时重训练 的底层运行时管理,其本质是封装在 Kubernetes 之上的多租户算力调度引擎:
- 容器化执行环境:支持 Docker 镜像自定义,GPU/CPU 配额精细控制。(help.sap.com)
- 事件驱动工作流:YAML 描述训练、评估、部署等节点,支持回滚与超时策略。(help.sap.com)
- 模型与数据版本化:与 S3 兼容对象存储、Git repository 深度集成,保证可追溯。
在实践中,AI Core 把模型生命周期拆分为 Scenario → Version → Execution
三层,不同团队可在同一租户下并行迭代,而不必担心资源冲突。
SAP AI Launchpad:可视化控制塔
如果说 AI Core 是发动机,AI Launchpad 就是驾驶舱。它提供 浏览器 UI 与 REST API,方便数据科学家、AI Ops 与业务分析师协同:
- 图形化监控 执行日志、指标与告警,支持即时重启或缩放推理容器。(help.sap.com)
- 项目级 RBAC 与密钥管理,保障跨团队协作安全。(help.sap.com)
- Prompt Editor & Playground:内置 Generative AI Hub,让业务同学通过拖拽就能调优
LLM prompt
。(help.sap.com)
Generative AI Hub:可信的 LLM 管理中心
大模型的接入往往伴随数据泄漏、版权与伦理风险。Generative AI Hub 在 AI Launchpad 与 AI Core 之上叠加一层 模型治理:
- 集成 OpenAI、Anthropic、Meta Llama 3、Mistral 等主流 LLM,并通过策略路由选择最优模型。(wsj.com)
- Prompt 版本控制 与 A/B 对比实验,帮助团队量化不同模板对业务指标的提升。(help.sap.com)
- 内置 内容审核 API 与 Token 计费监控,防止越权调用和成本失控。
SDK 与 API 生态
- AI Core SDK / Generative AI Hub SDK:面向
Python
的高阶封装,一行代码提交训练、生成或评估任务。(github.com) - @sap-ai-sdk/foundation-models:
JavaScript
/TypeScript
包,支持在 Node 服务或 SAP UI5 前端直接调用 LLM。(npmjs.com) - API Business Accelerator Hub 提供超过 50 个预构建 AI API,例如
Document Information Extraction
、Image Classification
等,可即插即用。(api.sap.com)
端到端开发流程示范
以下示例演示如何在 AI Foundation 上 从业务需求到生产部署:
-
需求场景:供应链团队希望预测 90 天内物料缺货风险,并用自然语言解释预测原因。
-
数据准备:通过
SAP Datasphere
打通 S/4HANA 与 Ariba 的库存、采购订单数据,存入S3
。 -
模型训练:
- 训练脚本封装进 Docker 镜像,Push 到
SAP BTP Kyma
Registry; - 在 AI Core 中编写
workflow.yaml
,定义数据加载、特征工程、XGBoost 训练、推理镜像生成四个步骤; - 提交 Execution,并在 Launchpad 监控 GPU 使用率、训练指标。
- 训练脚本封装进 Docker 镜像,Push 到
-
解释生成:在 Generative AI Hub 的 Prompt Editor 中,调用 Llama 3,输入模型输出的
top features
,生成中文解释。 -
服务部署:
- AI Core 自动生成
serving.yaml
,把模型暴露为 REST Endpoint; - 使用 SAP API Management 创建 API Product,加入 OAuth2 安全策略。
- AI Core 自动生成
-
业务嵌入:在 Fiori 应用里调用上述 API,展示风险得分与解释文本,同时允许采购专员点击
一键下单
。
整个流程无需手动管理 Kubernetes,也不必关心 LLM 的计费与合规,让团队真正专注于业务价值创造。
真实场景案例研究
案例一:全球快消企业的智能需求预测
一家跨国快消公司把 AI Foundation 部署在 AWS Frankfurt 区域,利用 AI Core 训练 Prophet + LLM 组合模型,对 1200 个 SKU 做滞后 180 天的需求预测,准确率提升 18%。(leverx.com, stratserv.co)
预测结果通过 Generative AI Hub 汇总为自然语言洞察,并写入 SAP Analytics Cloud 仪表板,业务用户反馈:报告编制时间由 4 小时降至 20 分钟。
案例二:Joule Copilot 在 ABAP 开发中的应用
内部 IT 团队把 Joule 集成进 ABAP Cloud IDE。开发者输入业务描述,例如 生成销售订单增强
,Joule 自动生成 ABAP RAP BO + Unit Test
,初版代码即可通过 70% 以上的 ATC 规则。(sap.com, sap.com)
该功能依赖 Generative AI Hub 后端的 LLM 路由和 Prompt 模版,由 AI Core 托管微调版本,保证了企业代码规范的一致性。
案例三:多 AI 工具协同的客服自动化
在最新的互联演示中,Joule 可以把处理中的工单转交给 Microsoft Copilot,后者再触发 SAP Build Process Automation 自动申请折扣,构建出跨系统的 AI 协同链。(theaustralian.com.au)
项目落地的常见陷阱与治理策略
陷阱 | 影响 | 建议治理手段 |
---|---|---|
只关注模型精度,忽略数据版权 | 法务风险、不可商用 | 通过 Generative AI Hub 的内容审核 API 做实时合规检查(help.sap.com) |
没有限制 Prompt Token 长度 | 成本失控 | 在 Launchpad 设定组织级配额与自动熔断阈值(help.sap.com) |
各团队自行部署 Notebook 环境 | 资源浪费、版本冲突 | 利用 AI Core 的多租户功能统一调度,设定 Label 隔离 |
忽视模型漂移监控 | 预测效果衰减 | 借助 AI Launchpad 内置的监控面板与自定义 Webhook 做 Auto-Retrain(help.sap.com) |
结语:面向未来的 AI 基座
AI Foundation 不仅把 AI Core、AI Launchpad、Generative AI Hub 和丰富的 API 整合为统一体验,也通过 云原生、可观测、合规治理 三大特性,为企业级场景提供了坚实的 AI 基座。面向未来,随着 SAP Vector Engine、HANA Cloud 与外部开源 LLM 的深度集成,开发者将能够更加轻松地构建 RAG(检索增强生成)、多智能体协作 等高级模式,加速业务流程的智能重塑。(discovery-center.cloud.sap, theaustralian.com.au)
行动指南:评估现有 AI 项目时,可先梳理数据主干和合规需求,结合 AI Foundation 的内置能力做差距分析;随后以可观测、可演进的方式逐步迁移模型,让 AI 真正成为业务增长的发动机。
参考资料
- SAP Community -
AI Foundation, SAP's all-in-one AI toolkit for developers
(community.sap.com) - SAP Help -
Generative AI Hub in SAP AI Core
(help.sap.com) - SAP Help -
What Is SAP AI Core?
(help.sap.com) - SAP.com -
Business AI & Generative AI Hub
(sap.com) - SAP API Hub -
AI Core API
(api.sap.com) - SAP Learning Journey -
AI Foundation on SAP BTP
(learning.sap.com) - SAP Help -
AI Launchpad User Guide
(help.sap.com) - SAP.com -
Joule Copilot
(sap.com) - Help.sap.com -
AI Launchpad Service Plans
(help.sap.com) - LinkedIn Blog -
Introduction to SAP AI Core
(linkedin.com) - Stratserv Blog -
AI Foundation on SAP BTP
(stratserv.co) - YouTube -
AI Foundation Orchestration Workflow
(youtube.com) - LeverX -
SAP AI Core & AI Launchpad Overview
(leverx.com) - GitHub -
ai-sdk-js foundation models
(github.com) - NPM -
@sap-ai-sdk/foundation-models
(npmjs.com) - SAP Discovery Center -
Generative AI Reference Architecture
(discovery-center.cloud.sap) - Wall Street Journal -
SAP Expands Partnerships With Big Tech in AI Push
(wsj.com) - The Australian -
Race on to build AI tools that talk to each other
(theaustralian.com.au)
这份工具链与方法论,期待助你在 SAP 生态中轻松驾驭 AI 潮流。