Measuring the Security Harm of TLS Crypto Shortcuts

Drew Springall™ Zakir Durumeric™ J. Alex Halderman®

" University of Michigan

#International Computer Science Institute

{aaspring, zakir, jhalderm}@umich.edu

ABSTRACT

TLS has the potential to provide strong protection against
network-based attackers and mass surveillance, but many im-
plementations take security shortcuts in order to reduce the
costs of cryptographic computations and network round trips.
We report the results of a nine-week study that measures
the use and security impact of these shortcuts for HTTPS
sites among Alexa Top Million domains. We find widespread
deployment of DHE and ECDHE private value reuse, TLS
session resumption, and TLS session tickets. These practices
greatly reduce the protection afforded by forward secrecy:
connections to 38% of Top Million HTTPS sites are vulnera-
ble to decryption if the server is compromised up to 24 hours
later, and 10% up to 30 days later, regardless of the selected
cipher suite. We also investigate the practice of TLS secrets
and session state being shared across domains, finding that in
some cases, the theft of a single secret value can compromise
connections to tens of thousands of sites. These results sug-
gest that site operators need to better understand the tradeoffs
between optimizing TLS performance and providing strong
security, particularly when faced with nation-state attackers
with a history of aggressive, large-scale surveillance.

1. INTRODUCTION

TLS is designed with support for perfect forward secrecy
(PFS) in order to provide resistance against future compro-
mises of endpoints [15]. A TLS connection that uses a non-
PFS cipher suite can be recorded and later decrypted if the
attacker eventually gains access to the server’s long-term pri-
vate key. In contrast, a forward-secret cipher suite prevents
this by conducting an ephemeral finite field Diffie-Hellman
(DHE) or ephemeral elliptic curve Diffie-Hellman (ECDHE)
key exchange. These key exchange methods use the server’s
long-term private key only for authentication, so obtaining

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).

IMC 2016 November 14-16, 2016, Santa Monica, CA, USA

© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4526-2/16/11.

DO http://dx.doi.org/10.1145/2987443.2987480

it after the TLS session has ended will not help the attacker
recover the session key. For this reason, the security com-
munity strongly recommends configuring TLS servers to
use forward-secret ciphers [27,50]. PFS deployment has in-
creased substantially in the wake of the OpenSSL Heartbleed
vulnerability — which potentially exposed the private keys
for 24-55% of popular websites [19]—and of Edward Snow-
den’s disclosures about mass surveillance of the Internet by
intelligence agencies [36,38].

Despite the recognized importance of forward secrecy,
many TLS implementations that use it also take various cryp-
tographic shortcuts that weaken its intended benefits in ex-
change for better performance. Ephemeral value reuse, ses-
sion ID resumption [13], and session ticket resumption [52]
are all commonly deployed performance enhancements that
work by maintaining secret cryptographic state for periods
longer than the lifetime of a connection. While these mech-
anisms reduce computational overhead for the server and
latency for clients, they also create important caveats to the
security of forward-secret ciphers.

TLS performance enhancements’ reduction of forward se-
crecy guarantees has been pointed out before [33, 54], but
their real-world security impact has never been systemati-
cally measured. To address this, we conducted a nine-week
study of the Alexa Top Million domains. We report on the
prevalence of each performance enhancement and attempt
to characterize each domain’s vulnerability window—the
length of time surrounding a forward-secret connection dur-
ing which an adversary can trivially decrypt the content if they
obtain the server’s secret cryptographic state. Alarmingly, we
find that this window is over 24 hours for 38% of Top Mil-
lion domains and over 30 days for 10%, including prominent
Internet companies such as Yahoo, Netflix, and Yandex.

In addition to these protocol-level shortcuts, many providers
employ SSL terminators for load balancing or other op-
erational reasons [39]. SSL terminators perform crypto-
graphic operations on behalf of a destination server, trans-
lating clients’ HTTPS connections into unencrypted HTTP
requests to an internal server. We find that many SSL termi-
nators share cryptographic state between multiple domains.
Sibling domains’ ability to affect the security of each other’s
connections also adds caveats to forward secrecy. We ob-
served widespread state sharing across thousands of groups

http://dx.doi.org/10.1145/2987443.2987480

of domains, including tens of thousands of sites that use
CloudFlare and thousands operated by Google.

The widespread use of TLS performance enhancements
may make them an attractive target for nation-state adver-
saries. Our findings show that a relatively small attack against
an SSL terminator (to recover cryptographic state) could be
leveraged to trivially decrypt up to months worth of connec-
tions to many different web sites. The cryptographic state
could conceivably also be obtained by legal compulsion, such
as a warrant, subpoena, or national security letter.

To our knowledge, we are the first to quantify this attack
surface and its dangers, and the first to show that real-world
TLS security benefits far less from forward secrecy than
statistics about support for PFS ciphers would suggest.

2. BACKGROUND

Transport Layer Security (TLS) and its predecessor, Secure
Sockets Layer (SSL), are cryptographic protocols that operate
below the application layer and provide end-to-end encrypted
channels for diverse applications, including HTTPS, IMAPS,
and SMTP. This section explains how TLS provides forward
secrecy and facilitates session resumption. We refer readers
to RFC 5280 [12] for a detailed description of the protocol.

2.1 Forward Secrecy in TLS

In TLS, perfect forward security [15] protects the confi-
dentiality of connections in the event that the server is later
compromised by an attacker. Its threat model is an adversary
who passively observes and records the TLS handshakes and
encrypted traffic between a victim client and server. At some
point after the connection has ended, the attacker gains access
to the server’s secret internal state— perhaps by exploiting a
memory leak like Heartbleed [11], by seizing the hardware
and performing live-memory forensics, or by computing the
server’s private key by factoring its public RSA modulus [25].
If the server correctly provides forward secrecy, the attacker
will not be able to decrypt connections recorded in the past.

In order to achieve forward secrecy, TLS supports us-
ing Diffie-Hellman key exchange to negotiate temporary
symmetric keys for the session. The protocol supports two
main flavors of Diffie-Hellman: finite-field ephemeral Diffie-
Hellman (DHE) and elliptic curve ephemeral Diffie-Hellman
(ECDHE). In DHE handshakes, the server selects a finite
cyclic group G and a generator g. It picks a random value
a and sends g* mod G to the client, while the client picks
a random b and sends g’ mod G to the server. Both sides
then compute g% and use it to derive the session keys. Per
RFC 5246 [14], both the client and server should generate
a fresh a and b for each handshake. ECDHE functions sim-
ilarly but over an elliptic curve group. The client generates
a random d4 and sends dsG to the client, while the client
generates dp and sends dpG to the server. Both then derive
session keys from dadpG.

Whether the handshake uses DHE or ECDHE, the server
still needs to authenticate itself to the client in order to prevent
man-in-the-middle attacks, and it does so using its long-term
private key and certificate. However, a successful attack on

the authentication would require compromising the private
key before the TLS handshake completes. After that, as long
as the client and server both discard the session state, the
connection data should be infeasible to decrypt.

Using forward secret TLS handshakes is considered a secu-
rity best practice [50], and all modern browsers support them.
However, many server implementations, including Apache
and Nginx, must be manually configured to use them.

2.2 Session Resumption

In order to reduce connection overhead, TLS allows subse-
quent sessions to resume a prior session without completing a
full handshake. The protocol provides two mutually exclusive
mechanisms to do this: session ID resumption and session
tickets. Both mechanisms allow the server to skip a costly
public-key operation on later connections, and they save one
network round trip of latency. As we will show, server sup-
port for these resumption methods is pervasive—50% of
Mozilla Firefox TLS sessions are resumptions' —and of the
Alexa Top Million websites that support HTTPS, 83% sup-
port session ID resumption and 76% support session tickets.

Session ID Resumption Session ID resumption was in-
troduced in SSL 2.0 [26] and allows a client and server to
quickly resume an existing session. During the initial hand-
shake, the server provides a random session ID, which both
the client and server maintain in a table that maps IDs to
session keys and connection states from recent connections.
Upon reconnection, the client provides this session ID in
its first protocol message, Client Hello. If the server recog-
nizes the session, it will respond with a Server Hello message
containing the same session ID, after which both sides im-
mediately resume an encrypted connection using the original
session keys. RFC 5246 suggests a maximum 24-hour ses-
sion lifetime, after which the server should discard the cached
key and state.

Session Ticket Resumption TLS session tickets were in-
troduced in RFC 4507 [51] and redefined in RFC 5077 [52].
They allow session resumption without requiring the server
to maintain per-connection state. Instead, the server provides
the client with an opaque encrypted “ticket” containing the
session keys and other data necessary to resume the session.
The client includes this ticket in later connections as an offer
to resume without the full handshake. More precisely, when
the client first connects, it includes an empty session ticket
extension in its Client Hello. The server includes a corre-
sponding extension in the Server Hello message and, after
the key exchange completes, sends the client an opaque ticket
and a lifetime “hint” in a New Session Ticket message. The
client then stores a mapping of the server’s identity to the
session ticket and cryptographic state required for the client
to resume the connection. On subsequent connections, the
client includes the ticket in its Client Hello. If the server ac-
cepts the ticket, the pair completes an abbreviated handshake,
like in session ID resumption. During this process, the server

TAs seen by Mozilla Firefox Telemetry [43] from March 3 to
March 15, 2016.

can reissue the client a fresh session ticket, but the cipher and
session keys remain constant.

The ticket can contain arbitrary data, but RFC 5077 rec-
ommends a structure consisting of a randomly generated key
name (identifying the symmetric keys used to encrypt the
ticket), an IV, the encrypted state, and a MAC. The RFC rec-
ommends that the server encrypt the state using AES-CBC
and a 128-bit key and construct the MAC using HMAC-SHA-
256 with a 256-bit key. (Note that these keys are never re-
vealed to the client, which merely stores the encrypted ticket
and returns it in later connections.) Throughout this work, we
refer to the symmetric encryption key as the “Session Ticket
Encryption Key” (STEK). Common server implementations,
including Nginx and Apache, support both loading pregen-
erated STEKs from the filesystem and generating random
STEKS upon server initialization.

Impacts on Forward Secrecy Both of these performance
enhancements degrade the protection achieved by forward-
secret TLS handshakes [33,54]. The client and server will
store the same symmetric key for use in future sessions, ex-
tending the lifetime of the ephemeral handshake. More impor-
tantly, for session tickets, compromising the server’s STEK
would allow decryption of all prior connections for which
that STEK was used. If a server’s STEK never changes, the
site provides no effective forward secrecy to connections
that use TLS session tickets, regardless of the key exchange
mechanism used.

2.3 Reusing Ephemeral Values

While not a session resumption technique, servers will
oftentimes reuse DHE and ECDHE values to reduce compu-
tation for each initial handshake. For instance, with DHE, a
server might repeatedly use the same value a so that it does
not have to keep computing g*. As we will discuss later,
we empirically find that at least 7.2% of HTTPS domains in
the Alexa Top Million reuse DHE values and 15.5% reuse
ECDHE values.

Since the client will generate its own unique values (b,
g"), the session keys derived from g* will differ for every
connection. However, an attacker who obtains the server’s a
can compute the session keys for any observed connection
that uses it. Thus, forward secrecy is not actually achieved
until the server stops reusing this value and securely erases
it. If the server’s a never changes, then a PFS key exchange
does not provide any effective forward secrecy.

We discuss how session resumption and ephemeral value
reuse affect the TLS ecosystem’s attack surface—and at-
tacker incentives—in Section 6.

2.4 Changesin TLS 1.3

Although still in the draft stage, TLS 1.3 [48] makes many
changes to session resumption and other security properties.
Session IDs and session tickets are nominally obsoleted, but
the mechanisms persist via the pre-shared keys (PSKs).

A PSK identifier is issued by the server in a New Session
Ticket message after the first handshake is complete and then
included in the second connection’s Client Hello. The identi-
fier itself may contain a database lookup key (analogous to

Alexa 1M domains (14Apr2016) 957,116
Non-blacklisted domains 952,991
DHE Browser-trusted TLS domains 427,313
Support DHE ciphers 252,340
> 2x same server KEX value 18,113
All same server KEX value 12,461
Alexa 1M domains (15Apr2016) 958,470
Non-blacklisted domains 954,338
Browser-trusted TLS domains 438,383
ECDHE Support ECDHE ciphers 390,120
> 2x same server KEX value 60,370
All same server KEX value 41,683
Alexa 1M domains (17Apr2016) 956,094
Non-blacklisted domains 951,978
Session Tickets Browser-tmstqd TLS domains 435,150
Issue session tickets 354,697
> 2x same STEK ID 353,124
All same STEK ID 334,404

Table 1: Support for Forward Secrecy and Resumption

a session ID resumption) or an encrypted and authenticated
copy of the TLS resumption state (analogous to a session
ticket resumption). Unlike the current TLS versions, ver-
sion 1.3 explicitly derives a separate resumption secret.

This resumption secret can be used in two ways for session
resumption. The first is for a direct resumption for a sec-
ondary session via the “psk_ke” mechanism. The second is
to be used as authentication for resumed connection that con-
ducts a second (EC)DHE key exchange via the “psk_dhe_ke”
mechanism.

In addition to these two, the resumption secret can also
be used for QUIC-like [47] O-RTT communication. In this
case, “early data” is sent by the client while awaiting the
completion of a resumed or new TLS handshake. The data is
encrypted to the resumption secret and can stream until the
client receives the server’s Finished message.

3. DATA COLLECTION

To assess the impacts of session resumption and ephemeral
value reuse, we measured HTTPS behavior of Alexa Top Mil-
lion domains [2] over a 9-week period in the Spring of 2016.
We repeatedly connected to each server on TCP/443 using
a version of the ZMap tool chain [16,20] that we modified
to support session ID and ticket resumption. In all cases, we
restricted our analysis to websites that presented browser-
trusted certificates that chain to the NSS root store?. Table 1
gives high level metrics from conducting 10 TLS connections
in quick succession to each Alexa Top Million domain on the
days given.

As with any active scanning research, there are many eth-
ical considerations at play. We followed the best practices
defined by Durumeric et al. [20] and refer to their work for
more detailed discussion of the ethics of active scanning.
All scans were completed from the University of Michigan

2Durumeric et al. find that 99.5% of certificates trusted by
NSS are valid in all major browsers and can be used to esti-
mate browser trusted websites [18].

o L
£ o8
E
I
B
> 06
2)
=ooap s
x
)
<<
[T
w02
(@]
0
o 6’0 kD 6'0 @0)'0)\'_.,)'7
(% (% (7 00 00 Oo

Max successful resumption delay (in minutes)

Figure 1: Session ID Lifetime—We measured how long
Session IDs were honored by HTTPS websites in the Alexa
Top Million.

campus and followed the institutional blacklist. For experi-
ments that required multiple connections in a single day, we
restricted our measurements to popular sites in the Alexa
Top Million for which this load should be negligible. When
possible we used existing data from the Censys Project [16]
instead of running redundant scans. We are publishing all of
the data we independently collected on Scans.io [17], and our
modifications have been merged into the main ZMap project.

Alexa Top Million Dataset Our measurements occurred
within a 9-week period from March 2, 2016 to May 4, 2016
and used the Alexa Top Million as the target domains. We
saw a surprising amount of churn within the Top Million do-
mains from day to day. In total, we scanned 1,527,644 unique
domains including over 155K which were in < 7 polls of
the Top Million. Only 539,546 domains remained in the Top
Million for the whole 9 weeks. Of these, 369,034 (68%) ever
supported HTTPS, 291,643 (54%) ever presented a browser-
trusted certificate, and 288,252 (53%) ever issued a session
ticket, completed a DHE or ECDHE key exchange, or re-
sumed a session. To prevent churn in the Top Million from
biasing our results, we restrict measurements over multiple
days to domains that remained in the list for the entire period.

4. TLS SECRET STATE LONGEVITY

In this section, we describe HTTPS domains’ behavior in
practice with regard to the lifetime of cryptographic state,
including how long session ID and session ticket resumption
is allowed, the lifetime of session ticket encryption keys,
and the reuse of key exchange values. We find that while
session IDs and session tickets are generally only honored
for under an hour (82% and 76%, respectively), session ticket
encryption keys (STEKSs) persist much longer.

4.1 Session ID Lifetime

To measure how long session IDs are accepted, we initiated
a TLS handshake with each of the Alexa Top Million domains
on April 27, 2016. We attempted to resume each session one

? /

& o8 —

E

T

E

- 06

= . e

g S 3

: 0.4 |= @

x

K

<

I-DL 0.2

© Advertised Lifetime Hints ———
0 Max Sucgessful Rgsumptiop

o 2 7 8) P’ p P
%2 2] %) % NS %

Max successful resumption delay (in minutes)

Figure 2: Session Ticket Lifetime— We measured adver-
tised session ticket lifetime and how long tickets were hon-
ored by Alexa Top Million websites.

second later and then every five minutes until either the site
failed to resume the session or 24 hours had elapsed. Of
the 433,220 domains that supported HTTPS and presented a
browser trusted certificate, 419,302 (97%) indicated support
for session ID resumption by setting a session ID value in
the Server Hello message, and 357,536 (83%) resumed the
session after a one second delay.

As shown in Figure 1, the distribution of lifetimes is some-
what discrete: 82% of domains that supported session ID
resumption allowed resumption for one hour or less, and 61%
did for less than five minutes. Only 2,845 domains (0.8%)
resumed sessions for 24 hours or longer; 86% of those do-
mains belong to or are hosted by Google. We also note that
Facebook’s CDN honored session IDs for more than 24 hours.

These empirical results align with the default configuration
of population web server implementations. Apache enables
session ID resumption by default and sets the lifetime to five
minutes [41]. Nginx issues session IDs but does not allow
resumption unless it is explicitly configured; session IDs ex-
pire after five minutes when enabled unless the administrator
sets a different lifetime [42]. Microsoft IIS expires session
IDs after ten hours [40], corresponding to the jump seen in
Figure 1.

4.2 Session Ticket Lifetime

We use a similar experiment to measure how long domains
allowed session tickets to resume TLS connections and the
hinted lifetime. We initiated a TLS handshake with each site
in the Alexa Top Million on April 29, 2016. We attempted
to resume each connection one second later, then every five
minutes until either the domain failed to resume the session
or 24 hours had elapsed. If the domain reissued a session
ticket during any of the connections, we continued to attempt
resumption with the ticket issued from the first connection.
‘We found that 366,178 out of the 461,475 domains with a
browser-trusted certificate (79%) issued a session ticket and
351,603 (76%) resumed the session after one second.

’
T
/M
o O /
o
-
-
T o6
3 ©
s
g 0.4
<
[T
o}
o 02
0 AIexa1M Hqsts e
o) >) 2 % %
Max span of a STEK (in days)
Figure 3: STEK Lifetime—TLS connections cannot

achieve forward secrecy until the STEK (the key used by
the server to encrypt the session ticket) is discarded.

Similar to session ID resumption, 67% of domains ac-
cepted a session ticket for less than five minutes and 76%
for one hour or less as seen in Figure 2. The indicated ticket
lifetime closely follows the advertised lifetime hint, with the
exception of 14,663 domains that leave it unspecified and
up to the client’s policy [52]. At the extreme end, we found
that two domains specified a lifetime hint longer than ten
days: fantabobworld.com and fantabobshow. com, both
of which specified a 90 day hint. 54,522 unique domains
hosted by CloudFlare resumed for 18 hours, causing the
steep increase in Figure 2. As with session ID resumption,
8,969 domains accepted tickets for 24 hours, of which 8,535
were hosted by Google (95%), which specified a 28 hour
lifetime hint.

This behavior also agrees with the known defaults for
popular web server implementations. Apache and Nginx
both enable session ticket resumption by default with a three
minute lifetime.

4.3 STEK Lifetime

While the time span that domains will accept previously
issued session tickets is an important metric, it reflects only
the ticket’s lifetime (set by policy) and not necessarily the
time period for which the associated STEK exists and is used
to issue new session tickets. As discussed in Section 2, the
content of a historical session can be decrypted using a site’s
STEK regardless of whether a PFS handshake occurs and
regardless of whether the ticket’s lifetime has expired or not.
In other words, a “forward secret” session is not actually
forward secret while the STEK that encrypted the associated
ticket persists.

While it is not possible to directly detect that the key used
to encrypt the session state has changed, popular server im-
plementations include a 16-byte STEK identifier in the ticket,
as prescribed in RFC 5077 [52]. We reviewed popular open-
source TLS implementations, including OpenSSL, LibreSSL,
GNUTLS, mbedTLS, and NSS, and found that all follow this
recommendation except for mbedTLS, which uses a 4-byte

days <1 oo==3
days =1 m—
1 <days <7 ===

100%
TR RN N NN
7 < days < 30 =Xxxxa

80% days >30
60% [
40%

20%

0%

Figure 4: STEK Lifetime by Alexa Rank— We found 12
Alexa Top 100 sites that persisted STEKSs for at least 30 days.

STEK identifier. We also tested Microsoft’s SChannel im-
plementation and found it to use an ASN.1 encoded object
containing a DPAPI object [7]. For the measurements below,
we parsed this object and extracted the Master Key GUID to
use as the STEK identifier.

Between March 2, 2016 and May 4, 2016, we connected
to the Alexa Top Million domains daily and recorded the
session ticket that was issued by the server, if one was is-
sued. We were able to determine the lifetime of each STEK
by looking for the first and last time that the (STEK identi-
fier, domain) pair was seen. As opposed to measuring the
number of sequential days that a domain issues tickets with
identical STEK identifiers, this metric accounts for much of
the real-world jitter seen in Internet scanning. This could
be due to the ZMap tool-chain’s choice of A-record entries
between days, a poorly configured load balancer which does
not maintain client-server affinity, or simply the server failing
to respond to one our connections. It is highly unlikely that
an administrator would switch static STEKs only to switch
back or that a randomly generated STEK identifier would col-
lide within the bounds of our study. Therefore, we can safely
assume that a STEK was in use between the first and last time
that its identifier was seen and that any intermediate STEK
identifiers seen were the result of fluctuations connecting to
different servers.

Of the 291,643 browser-trusted sites always in the Alexa
Top Million, 66,941 (23%) never issued a session ticket.
118,835 (41%) used different issuing STEKs for each day.
63,976 domains (22%) reused the same STEK for at least
7 days, and 28,210 domains (10%) reused for at least 30 days.
We show the CDF of these lifetimes in Figure 3.

We found a surprising collection of websites, including
those of major Internet companies, that fall within the 30+ day
reuse. Table 2 shows the ten most popular domains according
to their average Alexa ranking that reused a STEK for at least
7 days. While there are many other notable domains, we note
that there are a total of eight yandex. [t1d] domains, each
of which showed 63 days of reuse, slack.com (a popular
team communication service) showed 18 days of reuse, and

Rank Domain # Days Rank Domain # Days

5 yahoo.com 63 31 netflix.com 54
19 qq.com 56 35 imgur.com 63
20 taobao.com 63 41 tmall.com 63
21 pinterest.com 63 53 fc2.com 18

28 yandex.ru 63 55 pornhub.com 29

Table 2: Top Domains with Prolonged STEK Reuse — We
show the most popular domains (by average Alexa rank) that
reused a STEK for at least 7 days.

Rank Domain # Days Rank Domain # Days
31 netflix.com 59 580 kayak.com 13
53 fc2.com 18 592 cbssports.com 60

392 ebay.in 7 626 gamefags.com 12

456 ebay.it 8 633 overstock.com 17

528 bleacherreport.com 24 730 cookpad.com 63

Table 3: Top Domains with Prolonged DHE Reuse — We
show the most popular domains (by average Alexa rank) that
reused a DHE value for at least 7 days.

Rank Domain # Days Rank Domain # Days
31 netflix.com 59 353 paytm.com 27
74 whatsapp.com 62 464 playstation.com 11

158 vice.com 26 527 woot.com 62

221 9gag.com 31 528 bleacherreport.com 24

322 liputan6.com 28 615

leagueoflegends.com 27

Table 4: Top Domains with Prolonged ECDHE Reuse —
We show the most popular domains (by average Alexa rank)
that reused an ECDHE value for at least 7 days.

mail .ru showed 63 days of reuse. 63 days indicates that it
was seen on both the first and last day of our study and was
likely in use both before and after our study.

Figure 4 depicts how STEK lifetimes varied with Alexa
rank tiers according to the average rank of each domain over
the 9-week period. We observed 56 domains which issued
session tickets in the Alexa Top 100, 494 in the Top 1K,
4,154 in the Top 10K, 37,224 in the Top 100K, and 224,702 in
the Alexa Top Million. Again, these are only domains which
remained within the Alexa Top Million for the entire span of
our study.

The longevity of STEK lifetimes can be largely explained
by the the popular implementations. Apache 2.4.0 and Ng-
inx 1.5.7 and later allow an administrator to configure the
server to read 48 bytes of randomness from a file path on
disk. This file contains the STEK identifier, encryption key,
and MAC key in order to synchronize STEKSs across servers.
This configuration can only be changed via direct interaction
from the administrator and restarting the server process. If
this option is not available, or if a key file is not configured,
the server randomly generates a STEK on startup and uses it
for the lifetime of the process.

While there is a worrying set of websites that appeared to
never rotate STEKSs, we note that many have more reasonable

\i

0.995

0.99
Lawere!

..-""“
0.985
0.98 /'
0.975 o
0.97 /

/j

-~

CDF of HTTPS sites

0.965 Alexa 1M DHE (DHE ciphers) —e—
0.96 Alexa 1M E(PDHE (quang ciphers) ——
o) >) k2 D @

Max span of a server KEX(in days)

Figure 5: Ephemeral Exchange Value Reuse— We mea-
sured how long Alexa Top Million websites served identical
DHE and ECDHE values (note vertical scale is cropped).

configurations. Google, Twitter, YouTube, Baidu, and many
others never reused an issuing STEK across days. However,
as we will discuss in Section 7, that is not always the sole
indicator of a secure configuration.

4.4 EC(DHE) Value Lifetime

As described in Section 2, TLS servers can cache and
reuse ephemeral handshake values (a, g* in a finite-field
Diffie-Hellman exchange or da, d4 G in elliptic curve Diffie-
Hellman) to reduce the computational cost of public key
cryptography. Table 1 shows that 7.2% of domains in a single
Alexa Top Million list reuse a DHE value for some amount of
time and 15.5% reuse an ECDHE value for amount of time.

To determine how long these ephemeral values persist, we
analyzed two sets of daily scans for the Top Million Domains.
One set, obtained from the Censys project [16], offered only
DHE ciphers and the other offered ECDHE and RSA ciphers,
with ECDHE as the first priority.

DHE Of the 291,643 domains consistently in the Alexa
Top Million and who support HTTPS with a valid certificate,
only 166,608 (57%) ever connected successfully when the
client offered only DHE ciphers. 12,824 domains (4.4%)
reused a DHE value for some amount of time in the 10 con-
nection scans referenced in Table 1. The Censys project scans
show that 3,849 (1.3%) reused a DHE value for at least one
day, 3,347 (1.2%) for at least 7 days, and 1,527 (0.52%) for
30 or more days. Figure 5 shows this visually.

Table 3 shows the top ten domains which reused a DHE
value for more than 7 days as determined by their average
Alexa rank. We also find commsec.com.au (an Australian
brokerage firm) with 36 days of reuse and 32 kayak. [t1d]
domains with between 6 and 18 days of reuse.

ECDHE 234,302 domains 80% of those consistently in
the Alexa Top Million who support HTTPS with a valid cer-
tificate, completed an ECDHE handshake. 42,029 domains
(14.4%) reused an ECDHE value for some amount of time in
our 10 connection scans referenced in Table 1. In our daily

scans, we saw 9,886 domains (3.4%) that reused an ECDHE
value for at least one day, 8,710 (3.0%) reused for at least
7 days, and 4,071 (1.4%) reused for 30 or more days. This is
shown visually in Figure 5.

Table 4 shows the top ten domains that reused an ECDHE
value for more than 7 days. Notable domains beyond the top
ten include betterment. com (an online investing service)
with 62 days of reuse, mint . com (a budgeting website that
connects to banks and investment services) with 62 days
of reuse, and symantec.com, symanteccloud.com, and
norton.com with 41, 16, and 19 days of reuse respectively.

As seen in Figure 5, the ephemeral value longevity metrics
are fairly consistent with one another, but are substantially
different from the STEK longevity rates seen in Figure 3.

S. TLS SECRET STATE SHARING

When measuring the increased attack surface resulting
from stored TLS secrets, it is also important to consider cases
where secrets are shared across domains, servers, or data
centers. If a shared TLS secret is extracted from a single site,
it can be used to compromise connections to all the other
sites regardless of whether they use different long-term SSL
certificates.

We found many “service groups” in which multiple do-
mains shared a session cache, STEK, or Diffie-Hellman value,
making these secrets particularly valuable targets for attack.
While it would be logical for a single domain to use this tech-
nique to allow sessions to be resumed across multiple servers,
the magnitude of sharing across domains was surprising. The
root cause of this behavior is likely that domains share an SSL
terminator, whether it is a separate device such as a Cavium
card [8] or multiple domains running on the same web server.

5.1 Shared Session ID Caches

To establish a lower bound on how many websites share
session ID caches, we conducted a cross-domain probing
experiment where we attempted to resume a TLS connection
to domain » with a session that originated from domain a.
If performed exhaustively, this would require hundreds of
thousands of connections to each domain. However, we made
the experiment tractable by limiting groups to a small number
of domains from each AS and by transitively growing the
graph. That is, if we observed that id, was valid on domain b
and id;, was valid on domain ¢, we conclude that id, would
have also been valid on domain ¢ and group domains a, b,
and c together.

For each site, we randomly selected up to five other sites
in its AS and up to five sites that shared its IP address and
tested whether its session ID allowed connection to these
other sites. We note that because servers can expire session
IDs at any time, there is no harm to the server to provide an
invalid session ID; the server will simply complete a typical
TLS handshake as if no session ID had been presented.

Of the 357,536 domains that supported session ID resump-
tion in Section 4.1, we found 212,491 service groups, of
which 183,261 (86%) contained only a single domain. The
largest service group we found belonged to CloudFlare and

Operator # domains Operator # domains
CloudFlare #1 30,163 Blogspot #2 743
CloudFlare #2 15,241 Blogspot #3 732
Automattic #1 2,247 Blogspot #4 648
Automattic #2 1,552 Shopify 593
Blogspot #1 849 Blogspot #5 561

Table 5: Largest Session Cache Service Groups

Operator # domains Operator # domains
CloudFlare 62,176 GoDaddy 1,875
Google 8,973 Amazon 1,495
Automattic 4,182 Tumblr #1 975
TMall 3,305 Tumblr #2 959
Shopify 3,247 Tumblr #3 956

Table 6: Largest STEK Service Groups

Operator # domains Operator # domains
SquareSpace 1,627 Atypon 167
LiveJournal 1,330 Affinity Internet 146
Jimdo #1 179 Line Corp. 114
Jimdo #2 178 Digital Insight 98
Distil Networks 174 EdgeCast CDN 75

Table 7: Largest Diffie-Hellman Service Groups

contained 30,163 domains (66% of the 45,520 Alexa Top
Million domains in their AS). We show the ten largest session
cache service groups in Table 5.

As shown in the table, we observed cases where a single
logical provider (such as a CDN or cloud services company)
had multiple service groups even within the same /24 CIDR
block. We manually confirmed that this was not an artifact of
our grouping methodology and in fact reflected the remote
configuration. While we believe that this measurement tech-
nique is effective, it provides only a lower bound on the true
number of domains that share session caches. Our ability
to provide a tighter estimate is limited, since TLS does not
provide the client any information about the session cache or
saved session state other than the random session ID.

5.2 Shared STEKSs

To track how STEKSs are shared across servers, we con-
nected to each April 17, 2016 Alexa Top Million domain ten
times over a six hour window and grouped sites together that
shared at least one STEK identifier during the scans. Since
some providers rotate session tickets at smaller intervals than
six hours, we repeated the experiment with one connection
over a 30 minute window, similarly grouped domains, and
then joined the two groups.

Of the 354,697 sites that supported session tickets, we
found 170,634 STEK service groups, of which 140,715 (83%)
contained only a single domain. As with session IDs, the
largest group belonged to CloudFlare; it contained 62,176
domains. The next largest belonged to Alphabet (Google’s

parent company) and contained 8,973 hosts sharing a STEK.
‘We show the top ten largest STEK service groups in Table 6.

5.3 Shared (EC)DHE Values

Lastly, we looked for Alexa Top Million domains that
shared DHE or ECDHE key-exchange values. To do this, we
completed 10 TLS handshakes with each Alexa Top Million
domain over a five-hour window. As with the shared STEK
experiment, we also performed a scan that made a single
connection to every domain during a 30 minute window. Both
scans were conducted twice, once with only DHE ciphers
and once with only ECDHE ciphers, for a total of four scans.

We found that Diffie-Hellman values were shared in fewer
instances and by somewhat smaller groups than either session
caches or STEKSs. The most widely shared DHE value was
one we saw 1,368 times across 137 domains and 119 IP
addresses, all within AS 20401 (Hostway Corporation). We
also found a single ECDHE value shared 1,790 times across
179 domains on a single IP, which appeared to be a Jimdo
hosting server [31] on Amazon EC2.

We labeled servers that ever presented the same DHE or
ECDHE key-exchange value to be part of the same service
group. We found 421,492 Diffie-Hellman service groups,
of which 417,397 (99%) contained only a single domain.
The largest group belonged to SquareSpace and contained
1,627 domains. We identify the largest ephemeral value ser-
vice groups in Table 7.

6. CRYPTO SHORTCUT DANGERS

As of May 2016, we find that 90.2% of Top Million do-
mains with trusted HTTPS use forward secret key exchanges
for connections from modern browsers. Prior to our study,
we—the authors— would have assumed from this that con-
nections would be forward secret shortly after the connection
has ended. However, when we consider the interaction of
crypto shortcuts and cross-domain secret sharing, we see that
this is not the case and that many popular domains remain
susceptible to retrospective decryption.

As opposed to the naive understanding, forward secrecy
is not a binary concept being either forward secret or not
forward secret. Forward secrecy is a gradient where the con-
fidentiality of the data is forward secret after some passage of
time dependent on many different factors. At one extreme, an
arbitrarily complex key-ratcheting mechanism could protect
data confidentiality even if an endpoint is compromised while
the connection is in progress. The attacker would be able to
decrypt the connection’s content after the compromise, but
not before. At the other extreme, a TLS connection that uses
RSA key exchange is effectively never forward secure. Due
to the long-term nature of most SSL certificates as well as
the likelihood that they are stored on disk, recovery is likely
possible even long after the certificate has expired.

To quantify the amount of forward secrecy, we can attempt
to establish lower bounds for each site’s vulnerability win-
dow. This is the span of time during which an attacker could
recover the session keys for an observed TLS connection by
compromising secret values stored by the server. Our mea-

surements from the previous sections allow us to estimate
lower bounds for this window, but the true exposure may be
much greater. While we can detect that a server refuses to
resume older sessions, we cannot tell whether it has securely
erased the corresponding secrets or whether the secrets may
be vulnerable to forensic recovery.

In addition to quantifying the amount of forward secrecy,
we also wish to account for the concentration of the secrets
themselves. In a secure world, a compromise of one server
would affect as few connections on as few domains as pos-
sible. But as shown in Section 5, this is far from the case
and that the compromise of a small number of SSL endpoints
could endanger an out-sized number of domains’ content.

The interaction of these two factors presents an enticing
target for an attacker who wishes to decrypt large numbers of
connections for a comparatively small amount of work.

6.1 Exposure from Session Tickets

The long-term usage of session ticket encryption keys
(STEKS) is the most worrisome practice we observed. Since
the session ticket contains the session keys encrypted with
the STEK, and since it is sent as part of each TLS connection
outside of the TLS tunnel (initially by the server and subse-
quently by the client), an attacker who obtains the associated
STEK can decrypt the ticket, recover the session keys, and
decrypt the connection contents.

The vulnerability window begins when the STEK is gen-
erated (potentially before the victim connection) and ends
when it is securely erased from all servers. As reported in
Section 4.3, 36% of the ticket-issuing domains we considered
reused the same STEK for at least a day, 22% for more than
a week, and 10% for more than a month.

In Figure 6, we visualize the interaction of session ticket
service groups and the median STEK reuse for each ser-
vice group. The two largest service groups (CloudFlare and
Google) account for 20% of Top Million HTTPS sites and
are shown in the far-left column, and both reused STEKSs
for less than 24 hours. On the opposite end of the longevity
spectrum were TMall (a Chinese online retailer) and Fastly
(a CDN), which are represented by the largest red elements
in the second column of Figure 6. Together, they accounted
for 1,208 domains. Fastly, which controlled domains such
as foursquare. com, www.gov.uk, and aclu.org, always
issued session tickets with the same STEK throughout our
9-week study.

While not one of the largest service groups, we note a
concerning cluster of sites controlled by Jack Henry & Asso-
ciates. This service group contains 79 bank and credit union
domains which issued session tickets for 59 days using a
single STEK and then all rotated to a different—but still
shared— STEK for the final 4 days of our study.

While we are pleased that many of the largest service
groups rotate their STEKSs at least daily, the magnitude of
reliance on a small number of secret values is disconcerting.
Current versions of Chrome, Firefox, IE, and Microsoft Edge
all offer the session ticket extension by default and an attacker
who could collect the traffic as well as obtain the STEK within

STEK reuse (days)

'

30

Figure 6: STEK Sharing and Longevity Visualization—Each box in this illustration is sized proportionally to the number of
domains in that service group and colored according to the observed longevity of the key. Solid red boxes represent groups of

domains that shared a key that persisted for at least 30 days.

the vulnerability window would be able to decrypt and access
the millions of victims’ connection content with ease.

6.2 Exposure from Session Caches

When a server supports session ID resumption, an attacker
can potentially recover keys for past sessions as long as they
reside in the server’s session cache. As such, the vulnerability
window begins when the victim connection completes its
handshake and ends when the server implementation securely
discards the session state.

Our experiments in Section 4.1 show that at least 83% of
Top Million sites employ session caching and retain state for
some amount of time after a connection, and at least 18% do
so for more than 60 minutes. Section 5.1 shows that session
cache sharing is widespread, with 49% of Top Million do-
mains sharing a cache with at least one other popular domain.
Figure 7 shows the interaction of these measurements.

The combined effect of session caching and cache shar-
ing makes large interdomain session caches a particularly
attractive target for attackers. The ten largest shared caches
(Table 5) account for 15% of Top Million domains and exhib-
ited median vulnerability windows of 5 and 1,440 minutes
(24 hours). Of these, the five longest-lived all belonged to

Google Blogspot and exhibited median cache lifetimes rang-
ing from 4.5 hours to 24 hours (the maximum we tested). An
attacker who could access the contents of any one of these
caches would be able to decrypt hours’ worth of TLS traffic
for hundreds of popular sites.

Compared with Figure 6, Figure 7 shows a similar dis-
tribution within the largest service groups. Although the
maximum vulnerability windows are orders of magnitude
different, the proportional distribution is similar.

6.3 Exposure from Diffie-Hellman Reuse

When a server reuses Diffie-Hellman ephemeral values
(contrary to the advice of RFC 5246 [14]), this also leads to
an extended vulnerability window. The window last from the
time the server generates its random Diffie-Hellman value (a
or dy) until that value is securely erased. Like session tickets,
an attacker who leaks the server’s Diffie-Hellman value can
also decrypt future TLS connections until the server ceases
using that value as well as any previous connections using
that value.

Figure 7 shows combined effect of longevity and inter-
domain sharing was significantly smaller for Diffie-Hellman
reuse than for session resumption, but it still resulted in a few

Cache Lifetime

0 1,440

DH KEX reuse

30

Figure 7: Visualizing Session Caches and Diffie-Hellman Reuse—For comparison with Fig. 6, we show similar illustrations
of the longevity and cross-domain sharing exhibited by session caches (leff) and repeated Diffie-Hellman values (right).

notable high-value targets. Affinity Internet shared a single
Diffie-Hellman value across 91 domains for 62 days, and
Jimdo shared one value for 19 days across 64 domains and
another value for 17 days across a different 60 domains (seen
as the red blocks in the far left column).

6.4 Combined Exposure

Since session tickets, session caches, and Diffie-Hellman
reuse all lead to an extended vulnerability window, an attacker
with some way of accessing the server’s internal state could
choose to exploit any of them to compromise forward secrecy.
A domain’s overall exposure is determined by the longest
vulnerability window it exhibits for any of these mechanisms.

Of the 291,643 domains that were in the Alexa Top Million
for the duration of our measurements and supported HTTPS
with a browser-trusted certificate, 288,252 (99%) issued a
session ticket, resumed a session, or conducted a DHE or
ECDHE key exchange. Figure 8 shows the distribution of the
maximum vulnerability window found for every domain.

About 90% of browser-trusted Top Million domains with
browser-trusted certificates are configured to support forward-
secrecy with modern browsers, which, as commonly thought
of, would result in a vulnerability window that lasts no longer
than the connection. Due to combined effects of the TLS
crypto shortcuts we have discussed, we find that 110,788
domains (38%) have a maximum vulnerability window of
more than 24 hours, 65,028 (22%) of more than 7 days, and
28,880 (10%) of more than 30 days.

7. NATION-STATE PERSPECTIVE

As seen above, our results indicate that TLS crypto short-
cuts leave popular HTTPS sites significantly less well pro-
tected than we thought in the face of server-side information
leaks such as Heartbleed. However, the risks of these mecha-
nisms appear even more severe if we consider threats from
nation-state attackers such as the NSA. In particular, the
“shape” of the vulnerability windows created by session tick-
ets is ideally suited for exploitation by intelligence agencies
for surveillance purposes. In this section, we consider how a

10

nation-state attacker might seek to exploit TLS crypto short-
cuts and we assess the potential impact on Internet security of
such a compromise against one particular high-value target,
Google. Due to the availability of information regarding the
NSA and other “Five Eyes” agencies, we focus on the modi
operandi of these groups.

Recent TLS vulnerabilities—such as FREAK [6], Log-
jam [1], and DROWN [4]—require active interference with
each connection, making them unsuitable for stealthy, retroac-
tive, or wide-scale surveillance. Some researchers believe
that NSA can currently defeat TLS encryption when used
with 1024-bit RSA [35] or DHE [1]. In either case, specific
non-standard configurations would be required in cipher se-
lection (preferring RSA client write and DHE ciphers with
specific DH constants respectively) to enable passive decryp-
tion. However, there is no credible evidence that they can
break the higher-strength cryptography now used by most
popular sites.

7.1 The STEK as an Enabling Vector

It is well known that the NSA and other intelligence agen-
cies have the ability to passively collect vast amounts of
Internet traffic. Some collection is “targeted” at a specific
person, website, or IP address, but other collection involves
indiscriminately storing all network traffic in large circular
buffers, such as XKEYSCORE [36] and TEMPORA [38],
for ex post facto analysis [55].

These capabilities are almost certainly challenged by the
growth of TLS, which has accelerated following increased
public awareness of surveillance [37] and the availability
of free browser-trusted certificates [30]. Faced with these
constraints, nation-state adversaries might find that session
tickets provide an appealing mode of attack. Exfiltrating
one 16-byte STEK from a server would allow the adversary
to decrypt every passively collected connection which uses
the TLS session ticket extension during the vulnerability
window, including connections within the window but before
the STEK was leaked. As seen in Figures 6, stealing a small

0.8

0.6 jj:

CDF AlexaiM (w/ HTTPS)

0.4 __J_/
02 AlexaiM Hosts
Alexa10K Hosts
0) Alexa100 Hosts

S ’ Vs Ve Vs
2 4 % % 2
K2 % ¥ %
&)

Maximum Exposure Window Size

Figure 8: Overall Vulnerability Windows— This CDF de-
picts the combined effects of exposure from session tickets,
session caches, and Diffie-Hellman reuse.

number of STEKs would enable decryption of content from
a large number of domains.

Although obtaining a STEK may require attacking the
provider and not the end-target, intelligence agencies have
been known to conduct sophisticated intrusions in order to
facilitate later passive surveillance. GCHQ infiltrated SIM
card manufacturer Gemalto to steal the encryption keys used
by millions of cellphones [10, 45,53]. They also attacked
engineers at Belgacom, the largest ISP in Belgium, in order to
gain access to traffic from its core routers [21]. An unknown
adversary —thought to be a nation state—infiltrated Juniper
Networks’ code repository and inserted a cryptographic back-
door into the company’s VPN products [9]. Similar opera-
tions could be used to access STEKs from high-value targets.

It is likely that some domains synchronize STEKSs across
servers in many network locations and jurisdictions. A nation-
state attacker could attempt to compromise the synchroniza-
tion mechanism, or they could convince a hosting facility to
grant them access to the equipment for physical attacks [3].
Within its national borders, such an attacker might use the
court system to compel an organization to turn over the
STEKS, as Lavabit was ordered to do with its TLS private
key [46]. However obtained, the STEK would provide global
decryption capabilities.

7.2 Target Analysis: Google

To provide a concrete example, we simulate a nation-state
attacker’s possible analysis of an attack against Google—a
large tech company with experience being attacked by [23,56]
and defending against [22] nation-state adversaries. As the
attacker, our goal is to leverage our existing passive collec-
tion systems— which currently only see TLS ciphertext—in
order to gain insight into a large swath of network communi-
cation.

As seen in Table 6, a single STEK is shared by nearly all
Google web services, including Search, GMail, Drive, Docs,
Hangouts, and many more. We find that Google also uses
the same STEK for other TLS-based protocols, including

11

SMTP+STARTTLS, SMTPS, IMAPS, and POP3S. We ex-
perimentally determined that Google’s STEK is rolled over
every 14 hours, but issued tickets are accepted for up to
28 hours, indicating that each key is maintained at least that
long. This implies that only two 16-byte keys must be stolen
every 28 hours in order for the attacker to be able to de-
crypt all Google TLS connections that use the session ticket
extension.

By requesting the MX records for the Alexa Top Million
domains, we find that over 90,000 domains (9.1%) point to
Google’s SMTP servers. This is likely a reflection of the
Google for Work program in which more than 2 million
businesses (including 60% of Fortune 500 companies) use
Google’s service for their internal and external e-mail [24].
So in addition to the e-mail communications and web-app
data from @gmail.com addresses, the content of any com-
pany which relies on Google’s cloud service for intracompany
e-mail or web-apps would be decryptable.

The intelligence value from the resulting decryption ability
would extend far beyond Google’s own properties. Google
supplies analytics, ads, and APIs to many websites whose
requests would likely send the user’s Google cookies. We
have confirmed that browser connections to these Google
dependencies use the same STEK as other Google sites. Ob-
taining the Google STEK would allow tracking users even
when they are not directly accessing Google sites.

As this analysis shows, Google’s STEK would be an im-
mensely valuable target, as it would enable the decryption of
a huge amount of encrypted traffic and provide intelligence
on targeted and untargeted individuals. Even if the exploita-
tion required the use of sophisticated, persistent hardware
or software implants, the trade off between the possibility
of their discovery and the rich intelligence that would be
gained likely falls within the acceptable risks category for
many nation-state adversaries.

Google’s is the case of a well protected organization with
a highly talented security team. As shown in Section 4.3,
many other organizations—including large tech and cloud
service companies —appear to be far less cognizant of the
risks of TLS performance enhancements. As an example,
Yandex is a Russian Internet company that mirrors Google’s
offerings in search, e-mail, and cloud storage and enjoys a
57% domestic market share [32]. Like Google, Yandex ap-
pears to use a single STEK for almost all of its properties, but
unlike Google, this STEK has been in use continuously since
at least January 10, 2016—eight months prior to this writing.
A single operation to recover this STEK would immediately
allow decryption of months’ worth of connections.

8. DISCUSSION

While we’ve notified the domains and companies that we
explicitly point out above, there are other ways to address the
ecosystem-wide issues we found. In this section we step back
and view the problems found with (EC)DHE values, session
caches, and session tickets from a community level. We draw
lessons from our measurements and make recommendations
for server operators.

8.1 Security Community Lessons

The security community’s advocacy for the adoption of
TLS forward secrecy has shown clear gains, with over 90%
of Top Million HTTPS sites now using forward secret key ex-
changes for modern browsers. And the use of forward secret
key exchanges is undoubtedly a vast security improvement
from non-forward secret exchanges. However, our results are
a reminder that cipher selection is only one part of the story.

Forward secrecy comes with many critical caveats and nu-
ances of implementation [49]. The security community needs
to do a better job of monitoring implementation behavior—
through measurements like the ones we present here—in
order to have a realistic understanding of the threats we need
to guard against.

The security community also needs to more clearly com-
municate such caveats to TLS server operators and imple-
menters so that they can make informed choices about secu-
rity/performance tradeoffs. Absent such knowledge, there is
a risk that forward-secret TLS handshakes can create a false
sense of security. In the aftermath of the Heartbleed vulner-
ability, security experts urged administrators to enable PFS
ciphers in order to guard against retrospective decryption as a
result of future server-side memory leaks [19,57]. However,
only a few experts ever noted that performance enhancements
like session resumption undermine that protection [49], and
the fact seems to have been largely overlooked. The next
time there there is such a vulnerability, administrators who
enabled PFS as a defense might mistakenly believe they are
safe.

One opportunity to begin such education is protocol stan-
dards. As described in Section 2.4, the TLS 1.3 draft proposes
changes that have direct consequences for the protocol’s vul-
nerability window. Draft 15 briefly addresses the changes to
forward secrecy cased by PSK connections and 0-RTT, but
simply sets a 7 day maximum for PSK lifetimes without dis-
cussion. As shown above, PSKs honored for 7 days (whether
database lookups or encrypted state) require TLS secrets to
exist for the same amount of time and may be a significant
risk for high-value domains.

8.2 Server Operators Recommendations

For maximum security, server operators should disable all
session resumption and Diffie-Hellman reuse. And while
we are aware that many operators will be understandably
unwilling to do so due to the bandwidth, computation, and
latency advantages, there is a middle-ground between the
two that limits vulnerability windows as well as allows the
performance enhancements.

Use HTTP/2 Using HTTP/2 [5] drastically reduces the
computation, bandwidth, and latency of loading a website
without requiring any crypto shortcuts. An entire domain’s
contents (base page and all dependencies) can be loaded over
a single TLS connection. This results in the time-to-first
byte on the first request being identical to standard HTTP
over TLS, but all follow-on requests are significantly faster
without expanding the PFS vulnerability window.

12

Rotate STEKSs frequently Reducing the time period that
a STEK 1is used to encrypt session tickets is the simplest way
to reduce the vulnerability window when using session ticket
resumption. While Figure 3 shows that many domains are
already doing this, it also shows that many are not. Twitter,
CloudFlare, and Google have all created their own custom
key rotation solutions [27,33,34], but, to our knowledge, no
popular server software does this, with the exception of the
most recent release of Caddy [28].

Use different STEKSs for different regions Rather than
sharing a single session ticket key globally, large sites should
seek geographical diversity by using different keys in dif-
ferent regions. In addition to limiting exposure if a single
server is compromised or physically attacked, this practice
would help constrain the effects of legally mandated STEK
disclosure to connections within a particular jurisdiction.

Reduce session cache lifetimes Specific to session ID re-
sumption, quickly expiring cached session state is also useful.
The number of connections that are at risk of decryption at
any time grows proportionally with the lifetime of the server-
side state. By measuring the duration of a typical user visit,
operators can use that to ensure that a user only has to conduct
one full handshake per visit but also refrain from retaining
the session state longer than necessary.

Store, distribute, and erase secrets securely TLS imple-
mentations need to ensure that TLS secrets handled securely
before, during, and after their use. For a small site, these de-
tails should be handled by the TLS implementation. But for
more complicated deployments that involve synchronizing
caches or STEKSs across multiple servers, operators need to
be more directly involved. Whatever mechanism they design
to synchronize STEKSs needs to ensure that these keys are
transmitted securely and maintained only in memory (rather
than persistent storage), so that they can be reliably discarded.

9. RELATED WORK

The HTTPS ecosystem has been widely studied. Previ-
ous work has tracked the configuration and deployment of
HTTPS [18,29] and community projects exist to provide
up-to-date Internet-wide measurements of HTTPS servers
and certificates [16, 17]. However, none of these works has
directly measured support for TLS session resumption, and
none has attempted to quantify the lifetimes of cached ses-
sions, STEKSs, or repeated Diffie-Hellman values. We build
upon this prior research in a focused effort to understand and
quantify the impact of these performance enhancements on
forward secrecy and their effect on the overall attack surface
of the HTTPS ecosystem.

Previous work has shown that some TLS implementa-
tions generate a single DHE value and reuse it for period
of time. In May 2015, Adrian et al. [1] found that 17% of
randomly sampled IPv4 hosts that had browser-trusted certifi-
cates reused a DHE g“ value at least once over 20 connections,
and they noted that server-side DHE reuse was the default
behavior in OpenSSL and Microsoft SChannel. In January
2016, OpenSSL entirely removed support for DHE reuse fol-
lowing CVE-2016-0701 [44]. Our work expands on the prior

measurements by providing updated metrics following the
OpenSSL change, by characterizing the lengths over which
Diffie-Hellman values are repeated, and by also measuring
reuse for ECDHE (now the most popular key exchange).

We are not the first to recognize the impact of TLS session
resumption techniques on forward security. Representatives
from Mozilla, Google, Twitter, and CloudFlare have all writ-
ten about aspects of this issue [27,33, 34, 54]. Instead, our
work seeks to provide an empirical foundation for future dis-
cussions, system designs, and operator configuration choices
by providing the first detailed global measurements about
the use and impacts of session resumption and related TLS
crypto shortcuts. To our knowledge, we are also the first to
examine the effect of widespread inter-domain sharing of
session secrets.

10. CONCLUSION

We conducted a 9-week study of HTTPS within the Alexa
Top Million with a focus on understanding both the preva-
lence and characteristics of TLS performance enhancements
such as (EC)DHE value reuse, session ID resumption, and
session ticket resumption. Through this study, we were able
to characterize the effects of cryptographic shortcuts on the
promises associated with the use of forward-secret ciphers.
Our findings show that the TLS ecosystem achieves much
weaker protection from forward secrecy than statistics about
support for forward-secret handshakes would suggest. They
also emphasize the need for the security community to clearly
communicate the relevant tradeoffs between security and per-
formance to server operators.

Acknowledgments

The authors thank Adam Langley, Vern Paxson, Nick Sulli-
van, and our shepherd, Christo Wilson, for insightful discus-
sions and feedback. We also thank the exceptional sysadmins
at the University of Michigan for their ongoing help and sup-
port. This material is based upon work supported by the U.S.
National Science Foundation under grants CNS-1345254,
CNS-1409505, CNS-1518888, and CNS-1530915, by the
NSF Graduate Research Fellowship Program under grant
DGE-1256260, by the Post-9/11 GI Bill, by the Google Ph.D.
Fellowship in Computer Security, and by an Alfred P. Sloan
Foundation Research Fellowship.

11. REFERENCES

[1] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry,
M. Green, J. A. Halderman, N. Heninger, D. Springall,
E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella-Béguelin, and P. Zimmermann. Imperfect
forward secrecy: How Diffie-Hellman fails in practice.
In 22nd ACM Conference on Computer and
Communications Security, Oct. 2015.

[2] Alexa Internet, Inc. Alexa Top 1,000,000 Sites.
http://s3.amazonaws.com/alexa-static/top- lm.csv.zip.

[3] J. Angwin, C. Savage, J. Larson, H. Moltke, L. Poitras,
and J. Risen. AT&T helped U.S. spy on Internet on a

13

vast scale. The New York Times, Aug. 16, 2015.
http://www.nytimes.com/2015/08/16/us/politics/att-
helped-nsa-spy-on-an-array-of-internet-traffic.html.
N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger,
M. Dankel, J. Steube, L. Valenta, D. Adrian, J. A.
Halderman, V. Dukhovni, E. Kisper, S. Cohney,

S. Engels, C. Paar, and Y. Shavitt. DROWN: Breaking

TLS with SSLv2. In 25th USENIX Security Symposium,

Aug. 2016. https://drownattack.com.

M. Belshe, R. Peon, and M.Thomson. Hypertext

Transfer Protocol Version 2 (HTTP/2). RFC 7540

(Proposed Standard), May 2015.

B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud,

C. Fournet, M. Kohlweiss, A. Pironti, P--Y. Strub, and

J. K. Zinzindohoue. A messy state of the union:

Taming the composite state machines of TLS. In 36¢h

IEEE Symposium on Security and Privacy, May 2015.

E. Burzstein and J. M. Picod. Recovering Windows

secrets and EFS certificates offline. In 4th USENIX

Workshop on Offensive Technologies, Aug. 2010.

[8] Cavium. Intelligent network adapters.
http://www.cavium.com/
Intelligent_Network_Adapters_NIC4E.html.

[9] S. Checkoway, J. Maskiewicz, C. Garman, J. Fried,

S. Cohney, M. Green, N. Heninger, R.-P. Weinmann,

E. Rescorla, and H. Shacham. A systematic analysis of
the Juniper Dual EC incident. In 23rd ACM Conference
on Computer and Communications Security, Oct. 2016.

[10] CNE access to core mobile networks. Media leak.
https://theintercept.com/document/2015/02/19/
cne-access-core-mobile-networks-2/.

[11] Codenomicon. The Heartbleed bug.
http://heartbleed.com/.

[12] D. Cooper, S. Santesson, S. Farrell, S. Boeyen,

R. Housley, and W. Polk. Internet X.509 public key
infrastructure certificate and certificate revocation list
(CRL) profile. RFC 5280 (Proposed Standard), May
2008.

[13] T. Dierks and C. Allen. The TLS protocol version 1.0.
RFC 2246 (Proposed Standard), Jan. 1999.

[14] T. Dierks and E. Rescorla. The transport layer security
(TLS) protocol version 1.2. RFC 5246 (Proposed
Standard), Aug. 2008.
http://www.ietf.org/rfc/rfc5246.txt.

[15] W. Diffie, P. C. Van Oorschot, and M. J. Wiener.
Authentication and authenticated key exchanges.
Designs, Codes and cryptography, 2(2):107-125, 1992.

[16] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and
J. A. Halderman. Censys: A search engine backed by
Internet-wide scanning. In 22nd ACM Conference on
Computer and Communications Security, Oct. 2015.

[17] Z. Durumeric, J. A. Halderman, et al. Internet-wide
scan data repository. https://scans.io.

[18] Z. Durumeric, J. Kasten, M. Bailey, and J. A.
Halderman. Analysis of the HTTPS certificate
ecosystem. In 13th ACM Internet Measurement
Conference, IMC 13, pages 291-304, 2013.

(4]

(5]

(6]

(7]

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://www.nytimes.com/2015/08/16/us/politics/att-helped-nsa-spy-on-an-array-of-internet-traffic.html
http://www.nytimes.com/2015/08/16/us/politics/att-helped-nsa-spy-on-an-array-of-internet-traffic.html
https://drownattack.com
http://www.cavium.com/Intelligent_Network_Adapters_NIC4E.html
http://www.cavium.com/Intelligent_Network_Adapters_NIC4E.html
https://theintercept.com/document/2015/02/19/cne-access-core-mobile-networks-2/
https://theintercept.com/document/2015/02/19/cne-access-core-mobile-networks-2/
http://heartbleed.com/
https://scans.io

[19] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman,
M. Payer, N. Weaver, D. Adrian, V. Paxson, M. Bailey,
and J. A. Halderman. The matter of Heartbleed. In /4th
ACM Internet Measurement Conference, IMC 14,
pages 475488, 2014.

[20] Z. Durumeric, E. Wustrow, and J. A. Halderman.
ZMap: Fast Internet-wide scanning and its security
applications. In 22nd USENIX Security Symposium,
Aug. 2013.

[21] R. Gallagher. Operation Socialist. The Intercept, Dec.
13, 2014. https://theintercept.com/2014/12/13/
belgacom-hack-gchg-inside-story/.

[22] S. Gallagher. Googlers say “f*** you” to NSA,

company encrypts internal network. Ars Technica, Nov.

2013. http://arstechnica.com/information-technology/
2013/11/googlers-say-f-you-to-nsa-company-
encrypts-internal-network/.
B. Gellman and A. Soltani. NSA infiltrates links to
Yahoo, Google data centers worldwide, Snowden
documents say. The Washington Post, Oct. 30, 2013.
https://www.washingtonpost.com/world/national-
security/nsa-infiltrates-links-to-yahoo-google-data-
centers-worldwide-snowden-documents-say/2013/10/
30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.
html.
Google. Google for work: Enterprise solutions to work
the way you live. https://www.google.com/work/.
N. Heninger, Z. Durumeric, E. Wustrow, and J. A.
Halderman. Mining your Ps and Qs: Detection of
widespread weak keys in network devices. In
Proceedings of the 21st USENIX Security Symposium,
Aug. 2012.
[26] K. E. Hickman. The SSL protocol, Apr. 1995. https://
tools.ietf.org/html/draft-hickman-netscape-ssl-00.

(23]

[24]

[25]

[27] J. Hoffman-Andrews. Forward secrecy at Twitter, Nov.

2013. https://blog.twitter.com/2013/
forward-secrecy-at-twitter.

[28] M. Holt. Caddy 0.8.3 released, Apr. 2016.
https://caddyserver.com/blog/caddy-0_8_3-released.

[29] R. Holz, L. Braun, N. Kammenhuber, and G. Carle.
The SSL landscape: a thorough analysis of the X.509
PKI using active and passive measurements. In //th
ACM Internet Measurement Conference, IMC " 11,
pages 427444, 2011.

[30] Internet Security Research Group. Let’s Encrypt
certificate authority. https://letsencrypt.org/.

[31] Jimdo. Website builder: Create a free website.
http://www.jimdo.com/.

[32] D. Korobov. Yandex worker stole search engine source
code, tried selling for just $28k. Ars Technica, Dec.
2015. http://arstechnica.com/business/2015/12/
yandex-employee-stole-search-engine-source-code-
tried-to-sell-it-for-just-27000-2/.

[33] A. Langley. How to botch TLS forward secrecy, June
2013. https://www.imperialviolet.org/2013/06/27/
botchingpfs.html.

14

[34] Z. Lin. TLS session resumption: Full-speed and secure,
Feb. 2015. https://blog.cloudflare.com/
tls-session-resumption-full-speed-and-secure/.

[35] L. Lovecruft. Twitter, Dec. 2015. https://twitter.com/
isislovecruft/status/681590393385914368.

[36] M. Marquis-Boire, G. Greenwald, and M. Lee.

XKEYSCORE: NSA’s Google for the world’s private

communications. The Intercept, July 2015.

https://theintercept.com/2015/07/01/

nsas-google-worlds-private-communications/.

J. McLaughlin. Spy chief complains that Edward

Snowden sped up spread of encryption by 7 years, Apr.

2016. https://theintercept.com/2016/04/25/

spy-chief-complains-that-edward-snowden-sped-up-

spread-of-encryption-by-7-years/.

[38] media-34103. Media leak.
http://www.spiegel.de/media/media-34103.pdf.

[39] P. Membrey, D. Hows, and E. Plugge. SSL load
balancing. In Practical Load Balancing, pages
175-192. Springer, 2012.

[40] Microsoft. TLS/SSL settings, Nov. 2015. https://
technet.microsoft.com/en-us/library/dn786418.aspx.

[41] mod_ssl: Apache HTTP server version 2.4.
https://httpd.apache.org/docs/2.4/mod/mod_ssl.html.

[42] Module ngx_http_ssl_module. http://nginx.org/en/docs/
http/ngx_http_ssl_module.html.

[43] Mozilla Telemetry. https://telemetry.mozilla.org/.

[44] OpenSSL security advisory, Jan. 2016.
https://www.openssl.org/news/secadv/20160128.txt.

[45] PCS harvesting at scale. Media leak.
https://theintercept.com/document/2015/02/19/
pcs-harvesting-scale/.

[46] K. Poulsen. Snowden’s email provider loses appeal
over encryption keys. Wired, Apr. 2014.
https://www.wired.com/2014/04/lavabit-ruling/.

[47] QUIC, a multiplexed stream transport over UDP.
https://www.chromium.org/quic.

[48] E. Rescorla. The Transport Layer Security (TLS)
protocol version 1.3 draft-ietf-tls-tls13-15, Aug. 2016.
https://tools.ietf.org/html/draft-ietf-tls-tls13-15.

[49] I. Ristic. Twitter, Apr. 2014. https://twitter.com/
ivanristic/status/453280081897467905.

[50] L. Ristic. SSL/TLS deployment best practices, Dec.

2014. https://www.ssllabs.com/downloads/

SSL_TLS_Deployment_Best_Practices.pdf.

J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig.

Transport layer security (TLS) session resumption

without server-side state. RFC 4507 (Proposed

Standard), May 2006. Obsoleted by RFC 5077.

J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig.

Transport layer security (TLS) session resumption

without server-side state. RFC 5077 (Proposed

Standard), Jan. 2008.

J. Schahill and J. Begley. The great SIM heist. The

Intercept, Feb. 19, 2015.

https://theintercept.com/2015/02/19/great-sim-heist/.

[37]

[51]

[52]

[53]

https://theintercept.com/2014/12/13/belgacom-hack-gchq-inside-story/
https://theintercept.com/2014/12/13/belgacom-hack-gchq-inside-story/
http://arstechnica.com/information-technology/2013/11/googlers-say-f-you-to-nsa-company-encrypts-internal-network/
http://arstechnica.com/information-technology/2013/11/googlers-say-f-you-to-nsa-company-encrypts-internal-network/
http://arstechnica.com/information-technology/2013/11/googlers-say-f-you-to-nsa-company-encrypts-internal-network/
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
https://www.google.com/work/
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00
https://blog.twitter.com/2013/forward-secrecy-at-twitter
https://blog.twitter.com/2013/forward-secrecy-at-twitter
https://caddyserver.com/blog/caddy-0_8_3-released
https://letsencrypt.org/
http://www.jimdo.com/
http://arstechnica.com/business/2015/12/yandex-employee-stole-search-engine-source-code-tried-to-sell-it-for-just-27000-2/
http://arstechnica.com/business/2015/12/yandex-employee-stole-search-engine-source-code-tried-to-sell-it-for-just-27000-2/
http://arstechnica.com/business/2015/12/yandex-employee-stole-search-engine-source-code-tried-to-sell-it-for-just-27000-2/
https://www.imperialviolet.org/2013/06/27/botchingpfs.html
https://www.imperialviolet.org/2013/06/27/botchingpfs.html
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://twitter.com/isislovecruft/status/681590393385914368
https://twitter.com/isislovecruft/status/681590393385914368
https://theintercept.com/2015/07/01/nsas-google-worlds-private-communications/
https://theintercept.com/2015/07/01/nsas-google-worlds-private-communications/
https://theintercept.com/2016/04/25/spy-chief-complains-that-edward-snowden-sped-up-spread-of-encryption-by-7-years/
https://theintercept.com/2016/04/25/spy-chief-complains-that-edward-snowden-sped-up-spread-of-encryption-by-7-years/
https://theintercept.com/2016/04/25/spy-chief-complains-that-edward-snowden-sped-up-spread-of-encryption-by-7-years/
http://www.spiegel.de/media/media-34103.pdf
https://technet.microsoft.com/en-us/library/dn786418.aspx
https://technet.microsoft.com/en-us/library/dn786418.aspx
https://httpd.apache.org/docs/2.4/mod/mod_ssl.html
http://nginx.org/en/docs/http/ngx_http_ssl_module.html
http://nginx.org/en/docs/http/ngx_http_ssl_module.html
https://telemetry.mozilla.org/
https://www.openssl.org/news/secadv/20160128.txt
https://theintercept.com/document/2015/02/19/pcs-harvesting-scale/
https://theintercept.com/document/2015/02/19/pcs-harvesting-scale/
https://www.wired.com/2014/04/lavabit-ruling/
https://www.chromium.org/quic
https://tools.ietf.org/html/draft-ietf-tls-tls13-15
https://twitter.com/ivanristic/status/453280081897467905
https://twitter.com/ivanristic/status/453280081897467905
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices.pdf
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices.pdf
https://theintercept.com/2015/02/19/great-sim-heist/

[54] T. Taubert. Botching forward secrecy: The sad state of [56] K. Zetter. Google hack attack was ultra sophisticated,

server-side TLS session resumption implementations, new details show. Wired, Jan. 2010.

Nov. 2014. https://www.wired.com/2010/01/operation-aurora/.

https://timtaubert.de/blog/2014/11/the-sad-state- of- [57] Y. Zhu. Why the web needs perfect forward secrecy

server-side-tls-session-resumption-implementations/. more than ever. EFF Deeplinks Blog, Apr. 2014.
[55] N. Weaver. In defense of bulk surveillance: It works, https://www.eff.org/deeplinks/2014/04/

Sept. 2015. https://www.lawfareblog.com/ why-web-needs-perfect-forward-secrecy.

defense-bulk-surveillance-it-works.

15

https://timtaubert.de/blog/2014/11/the-sad-state-of-server-side-tls-session-resumption-implementations/
https://timtaubert.de/blog/2014/11/the-sad-state-of-server-side-tls-session-resumption-implementations/
https://www.lawfareblog.com/defense-bulk-surveillance-it-works
https://www.lawfareblog.com/defense-bulk-surveillance-it-works
https://www.wired.com/2010/01/operation-aurora/
https://www.eff.org/deeplinks/2014/04/why-web-needs-perfect-forward-secrecy
https://www.eff.org/deeplinks/2014/04/why-web-needs-perfect-forward-secrecy

	Introduction
	Background
	Forward Secrecy in TLS
	Session Resumption
	Reusing Ephemeral Values
	Changes in TLS 1.3

	Data Collection
	TLS Secret State Longevity
	Session ID Lifetime
	Session Ticket Lifetime
	STEK Lifetime
	EC(DHE) Value Lifetime

	TLS Secret State Sharing
	Shared Session ID Caches
	Shared STEKs
	Shared (EC)DHE Values

	Crypto Shortcut Dangers
	Exposure from Session Tickets
	Exposure from Session Caches
	Exposure from Diffie-Hellman Reuse
	Combined Exposure

	Nation-state Perspective
	The STEK as an Enabling Vector
	Target Analysis: Google

	Discussion
	Security Community Lessons
	Server Operators Recommendations

	Related Work
	Conclusion
	References

