关于神经网络权重初始值的设置的研究

本文探讨了神经网络权重初始化的重要性,分析了全为0或相同值的弊端,并通过实验展示了不同初始值如Xavier和He初始化对隐藏层激活值分布的影响。实验表明,He初始化在ReLU激活函数中表现更优,防止梯度消失,有利于深层网络的学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、权重初始值

权值衰减—抑制过拟合、提高泛化能力。

所谓权值衰减,即,以减小权重参数的值为目的进行学习。

所以说人们一开始,就想把权重初始值设置的比较小。

在这里插入图片描述

那如果权重初始值全设为0或者一样的值呢?那可不行,如果输入层权重为0,那么第二层神经元都到的全是0,如果第二层是乘法节点,拿上图举例子,x=y=0,所以返回来的两个梯度是一个样的。就没意义了。所有权重共同进退有何意义?权重共同进退,术语叫做权重均一化。

二、权重初始值会影响隐藏层的激活值分布

先看斯坦福大学做的一个实验:

向一个5层神经网络传入随机生成的输入数据,用直方图绘制各层激活值的数据分布。

实验目的是通过改变标准差,观察激活值的分布如何变化。

实验代码:

这个实验各层激活值的结果保存在activations变量中。

import numpy as np
import matplotlib
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天学点

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值