使用PPMI改进共现矩阵

本文探讨了如何使用PPMI(Positive Pointwise Mutual Information)改进共现矩阵,以更准确地衡量单词间的相关性。PPMI解决了共现次数为0导致的负无穷问题,将相关性表示为非负实数。通过分析代码实现,揭示了PPMI计算的实际过程,并指出其与原始PMI定义的差异。最后,提到了在大量词汇的语料库中,向量降维是处理高维稀疏矩阵的常见策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用PPMI改进共现矩阵

共现矩阵的元素表示两个单词同时出现的次数,这里的次数并不具备好的性质,举个例子,有短语叫the car,因为the是个常用词,如果以两个单词同时出现的次数为衡量相关性的标准,与drive 相比,the和car的相关性更强,这是不对的。

点互信息(Pointwise Mutual Information,PMI):表达式如下,P(x)表示x发生的概率,P(y)表示y发生的概率,P(x,y)表示x和y同时发生的概率。PMI的值越高,表明x与y相关性越强。

在这里插入图片描述

用共现矩阵重写PMI表达式:将共现矩阵表示为C,将单词X和Y的共现次数表示为C(x,y),将单词x和y的出现次数分别表示为C(x)、C(y),将语料库的单词数量记为N。表达式如下。

在这里插入图片描述

正的点互信息(Positive PMI,PPMI):当两个单词的共现次数为0时, log0=-∞。为解决这个问题,实践上会使用下述正的点互信息。可以将单词间的相关性表示为大于等于0的实数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天学点

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值