基于SVD的降维优化

本文探讨了基于SVD的向量降维优化,通过保留数据的重要信息并减少维度,特别是在处理稀疏矩阵时。SVD将矩阵分解为正交矩阵U、对角矩阵S和正交矩阵V,奇异值的大小反映了基轴的重要性,可用于降维。通过取U矩阵的前几个元素,可以将稀疏向量转化为低维密集向量,实现在NLP领域的单词分布式表示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于SVD的降维优化

向量降维:尽量保留数据“重要信息”的基础上减少向量维度。可以发现重要的轴(数据分布广的轴),将二维数据 表示为一维数据,用新轴上的投影值来表示各个数据点的值,示意图如下。

在这里插入图片描述

稀疏矩阵和密集矩阵转换:大多数元素为0的矩阵称为稀疏矩阵,从稀疏矩阵中找出重要的轴,用更少的维度对其进行重新表示。结果,稀疏矩阵就会被转化为大多数元素均不为0的密集矩阵。这个密集矩阵就是我们想要的单词的分布式表示。

奇异值分解(Singular Value Decomposition,SVD):任意的矩阵X分解为U、S、V,3个矩阵的乘积,其中U和V是列向量彼此正交的正交矩阵,S是除了对角线元素以外其余元素均为0的对角矩阵。

在这里插入图片描述

关于SVD是怎么回事,从代码中分析:

代码中使用 NumPy 的 linalg 模块中的 svd 方法,如下。

U, S, V = np.linalg.svd(W)

我们输出C、W、U、S、V,如下所示,可以看出,C是共现矩阵、W是PPMI矩阵。可以看到S矩阵是降序排列的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天学点

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值