权重衰减(weight decay)与学习率衰减(learning rate decay)

本文深入解析了权重衰减(L2正则化)的概念,阐述了其如何通过添加正则化项至代价函数来防止模型过拟合。详细解释了正则项系数λ的作用,并通过数学推导说明了权重衰减的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 权重衰减(weight decay)

L2正则化的目的就是为了让权重衰减到更小的值,在一定程度上减少模型过拟合的问题,所以权重衰减也叫L2正则化。

1.1 L2正则化与权重衰减系数

L2正则化就是在代价函数后面再加上一个正则化项:

 

其中 C0 代表原始的代价函数,后面那一项就是L2正则化项,它是这样来的:所有参数w的平方的和,除以训练集的样本大小n。λ就是正则项系数,权衡正则项与 C0项的比重。另外还有一个系数1/2, 1/2经常会看到,主要是为了后面求导的结果方便,后面那一项求导会产生一个2,与1/2相乘刚好凑整为1。系数λ就是权重衰减系数

1.2 为什么可以对权重进行衰减

我们对加入L2正则化后的代价函数进行推导,先求导:

转载自:https://zhuanlan.zhihu.com/p/38709373,本文只做个人记录学习使用,版权归原作者所有。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值