ubuntu18.04上cuda及cudnn安装

本文档详细介绍了在Ubuntu 18.04系统中安装CUDA 11.0和cudnn 8.0.5的过程,包括环境准备、CUDA和cudnn的下载与安装、配置环境变量、测试验证以及显卡信息的查询方法。通过这些步骤,可以为深度学习和GPU加速提供必要的软件支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、准备工作

2、安装cuda(GPU加速)

3、安装cudnn(GPU加速库)

4、显卡信息查询相关指令

4.1、查看显卡信息

4.2、查看驱动信息

4.3、实时查看GPU的使用情况


系统环境:ubuntu18.04、cuda11.0、driver450、cudnn8.5。

1、准备工作

       首先需要安装一些基本的组件,否则后面安装cuda会失败(比方会因为缺失gcc/g++/cc等编译工具安装cuda失败等等),ubuntu处事环境设置,所以先执行下面的命令:

       安装开发包 打开终端输入:

# 系统升级
sudo apt-get update -y
sudo apt-get upgrade -y
# 安装python基础开发包
sudo apt install -y python-dev python-pip python-nose gcc g++ git gfortran vim build-essential

        安装运算加速库 打开终端输入:

sudo apt install -y libopenblas-dev liblapack-dev libatlas-base-dev

2、安装cuda(GPU加速)

step1、下载文件

       下载地址:https://developer.nvidia.com/cuda-downloads ,这里选择runfile(local)类型文件安装。

       当前页只有最新版本,早期版本在下面链接中。

       点开后,cuda对应平台各个版本下载地址:

CUDA Toolkit Archive | NVIDIA Developer

       这里,下载11.0版本。

step2、安装cuda

chmod 777 cuda_11.0.3_450.51.06_linux.run # 修改权限 
sudo ./cuda_11.0.3_450.51.06_linux.run # 运行安装

       按照提示依次安装,不要安装OpenGL。这里建议驱动和cuda分开装,这里不用再装驱动,文档也没必要,毕竟有在线文档。

       安装完成后,提示:

       显示了安装路径及log,需要确保的路径配置。

step3、将CUDA路径添加至环境变量,在终端输入

sudo gedit ~/.bashrc

       在.bashrc文件中添加:

# cuda path
# ln -s /usr/local/cuda-11.0 /usr/local/cuda #建立软链接
export CUDA_HOME=/usr/local/cuda
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin

       之后source ~/.bashrc即可。

step4、CUDA的samples测试

cd /usr/local/cuda/samples/1_Utilities/deviceQuery
sudo make
sudo ./deviceQuery

step5、测试是否安装正确

       在终端输入:nvcc -V

       会得到相应的nvcc编译器相应的信息,那么CUDA配置成功了。(记得重启系统)

       删除缓存安装包:apt-get autoremove

3、安装cudnn(GPU加速库)

       cudnn下载路径:cuDNN Archive | NVIDIA Developer

       选择与cuda版本匹配的cudnn版本,这里选8.0.5版本。

       点击后,显示对应文件:

       这里选动态库安装,点击下载,deb方式卸载更新起来不太方便。

       解压cudnn-11.0-linux-x64-v8.0.5.39.tgz,然后用如下命令解压:

tar -xzvf cudnn-11.0-linux-x64-v8.0.5.39.tgz

       拷贝.h 和 libs文件到cuda安装目录,并给予执行权限:

sudo cp -d cuda/include/cudnn*.h /usr/local/cuda/include/
sudo cp -d cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

       测试cudnn:

       cudnn版本是卸载CUDNN_MAJOR这宏中。

       7.6以前在cudnn.h中:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

        8.0后在cudnn_version.h中:

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

4、显卡信息查询相关指令

4.1、查看显卡信息

       lspci | grep VGA # 查看显卡信息

4.2、查看驱动信息

       ubuntu-drivers devices #查看驱动信息

4.3、实时查看GPU的使用情况

       watch -n 1 nvidia-smi # 在终端输入命令,实时查看GPU的使用情况,每隔一秒刷新一次

### 安装 CuDNN on Ubuntu 的逐步指南 为了在Ubuntu上成功安装CuDNN,需遵循一系列特定步骤来确保兼容性性能优化。首先确认已安装NVIDIA驱动程序以及CUDA Toolkit版本匹配所要安装CuDNN版本[^3]。 #### 验证 CUDA 版本 通过命令`nvcc --version`可以查看当前系统中的CUDA编译器版本,以此决定适合的CuDNN版本。这一步骤对于后续操作至关重要,因为不同版本间的兼容性可能影响到最终应用的表现效果[^4]。 ```bash $ nvcc --version ``` #### 下载 CuDNN 库文件 访问[NVIDIA官方网站](https://developer.nvidia.com/cudnn),注册并登录账户后下载对应于已安装CUDA版本的CuDNN库压缩包。注意选择适用于Linux系统的tar格式文件进行下载[^5]。 #### 解压与复制文件至指定路径 解压下载好的cuDNN tarball文件,并将其内的头文件(`*.h`)、库文件(`lib*`)分别拷贝到对应的CUDA目录下: ```bash $ tar -xzvf cudnn-<version>-linux-x64-v8.0.tgz $ sudo cp cuda/include/cudnn*.h /usr/local/cuda/include/ $ sudo cp cuda/lib64/* /usr/local/cuda/lib64/ ``` 完成上述动作之后记得执行环境变量更新指令使更改生效: ```bash $ ldconfig ``` #### 测试安装是否成功 最后可以通过编写简单的测试代码验证CuDNN是否被正确加载初始化。创建一个新的C++源码文件test_cudnn.cpp,在其中调用cudnnCreate()函数尝试建立句柄对象;如果返回状态为CUDNN_STATUS_SUCCESS,则说明配置无误[^6]。 ```cpp #include <iostream> #include <cudnn.h> int main(){ cudnnHandle_t handle; cudnnStatus_t status = cudnnCreate(&handle); if (status != CUDNN_STATUS_SUCCESS){ std::cerr << "Failed to create cuDNN context." << std::endl; return 1; } std::cout << "Successfully created cuDNN context!" << std::endl; // Clean up resources before exit. cudnnDestroy(handle); return 0; } ``` 编译运行这段小程序即可得知结果。若有任何错误提示,请仔细检查之前的每一步设置过程直至解决问题为止。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jingbo1801

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值