YoloV8改进策略:即插即用的SCConv,YoloV8的轻量化涨点神器

论文提出SCConv,一种用于减少卷积层中空间和通道冗余的模块,它由空间重构单元SRU和通道重构单元CRU组成。SCConv可以替代标准卷积,降低计算成本并提高性能。实验表明,SCConv在CIFAR和ImageNet图像分类以及PASCAL VOC和MS COCO物体检测任务中提升了模型性能,同时减少了参数和FLOPs。在YOLOV8中应用SCConv的两种改进方式均取得积极效果,实现轻量化网络设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

论文链接:https://openaccess.thecvf.com/content/CVPR2023/papers/Li_SCConv_Spatial_and_Channel_Reconstruction_Convolution_for_Feature_Redundancy_CVPR_2023_paper.pdf

卷积神经网络(CNN)在各种计算机视觉任务中取得了显著的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取冗余特征。最近的作品要么压缩大型模型,要么探索设计良好的轻量级模型。SCConv 利用特征之间的空间和通道冗余来进行CNN压缩,以减少冗余计算并促进代表性特征的学习。SCConv由空间重构单元(SRU)和信道重构单元(CRU)两个单元组成。SRU采用分离重构的方法来抑制空间冗余,CRU采用分离变换融合的策略来减少信道冗余。

SCConv是一种即插即用的架构单元,可直接用于替代各种卷积神经网络中的标准卷积。实验结果表明,scconvo嵌入模型能够通过减少冗余特征来获得更好的性能,并且显著降低了复杂度和计算成本。

使用SCConv代替YoloV8中的卷积可以实现轻量化的网络设计!本文尝试了两种改进方式,均有一定的提升!

在这里插入图片描述

论文:SCConv:用于特征冗余的空间和通道重构卷积

代码链接:h

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值