文章目录
摘要
论文链接:https://openaccess.thecvf.com/content/CVPR2023/papers/Li_SCConv_Spatial_and_Channel_Reconstruction_Convolution_for_Feature_Redundancy_CVPR_2023_paper.pdf
卷积神经网络(CNN)在各种计算机视觉任务中取得了显著的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取冗余特征。最近的作品要么压缩大型模型,要么探索设计良好的轻量级模型。SCConv 利用特征之间的空间和通道冗余来进行CNN压缩,以减少冗余计算并促进代表性特征的学习。SCConv由空间重构单元(SRU)和信道重构单元(CRU)两个单元组成。SRU采用分离重构的方法来抑制空间冗余,CRU采用分离变换融合的策略来减少信道冗余。
SCConv是一种即插即用的架构单元,可直接用于替代各种卷积神经网络中的标准卷积。实验结果表明,scconvo嵌入模型能够通过减少冗余特征来获得更好的性能,并且显著降低了复杂度和计算成本。
使用SCConv代替YoloV8中的卷积可以实现轻量化的网络设计!本文尝试了两种改进方式,均有一定的提升!
论文:SCConv:用于特征冗余的空间和通道重构卷积
代码链接:h