YoloV8改进策略:BackBone改进|TransNeXt——ViT的鲁棒Foveal视觉感知(独家原创)

摘要

TransNeXt主干网络能够减少CNN网络中的深度退化问题,本文使用TransNeXt主干网络,替换YoloV8的Backbone,实现涨点!

论文:《TransNeXt:ViT的鲁棒Foveal视觉感知》

论文:https://arxiv.org/pdf/2311.17132.pdf
Code: https://github.com/DaiShiResearch/TransNeXt
由于残差连接中的深度退化效应,许多依赖堆叠层进行信息交换的高效视觉Transformer模型往往无法形成充分的信息混合,导致不自然的视觉感知。为了解决这个问题,本文提出了聚合注意力(Aggregated Attention),这是一种基于仿生设计的令牌混合器,它模拟了生物的中心凹视觉和连续的眼球运动,同时使特征图上的每个令牌都能具有全局感知能力。此外,我们还引入了可学习的令牌,它们与传统的查询和键进行交互,进一步丰富了亲和力矩阵的生成方式,而不仅仅是依赖于查询和键之间的相似性。我们的方法不依赖于堆叠进行信息交换,从而有效地避免了深度退化,并实现了自然的视觉感知。此外,我们还提出了卷积GLU(Convolutional GLU),这是一种通道混合器,它弥补了GLU和SE机制之间的鸿沟。它使每个令牌能够基于其最近的邻域图像特征获得通道注意力,从而增强了局部建模能力和模型鲁棒性。我们将聚合注意力和卷积GLU相结合,创建了一个新的视觉骨干网络,称为TransNeXt。大量的实验表明,我们的TransNeXt在多个模型尺寸上均达到了SOTA的性能。在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值