YoloV9改进策略:Block改进|TAB,融合组内自注意力(IASA)和组间交叉注意力(IRCA)|即插即用

论文信息

本文提出了一种新颖的轻量级图像超分辨率网络,称为内容感知令牌聚合网络(CATANet)。该网络旨在解决基于Transformer的方法在高空间分辨率下的计算复杂度问题。CATANet通过高效的内容感知令牌聚合模块(CATA)来捕捉长距离依赖关系,同时保持高推理速度。

  • 论文连接:https://arxiv.org/pdf/2503.06896
  • Github代码链接: https://github.com/EquationWalker/CATANet

创新点

  1. 内容感知令牌聚合模块(CATA):该模块通过聚合内容相似的令牌来减少冗余信息,提高效率。与传统方法不同,CATA在训练阶段更新令牌中心,而在推理阶段保持不变,从而加快推理速度。
  2. 组内自注意力(IASA)和组间交叉注意力(IRCA):这两种机制分别用于在内容感知区域内和组间进行信息交互,增强了模型对远距离依赖关系的捕捉能力。
  3. 轻量级设计:CATANet的设计使其适用于资源受限的环境,如移动设备,且在保持高性能的同时显著提高了处理速度。

方法

CATANet的整体架构包括三个主要模块:

  1. 浅层特征提取:通过卷积层将低分辨率输入图像转换为高维特征。
  2. 深层特征提取:使用多个残差组(RG),每个组包含CATA模块、IASA和卷积层,以提取更深层次的特征。
  3. 图像重建模块:将提取的特征处理后生成高分辨率图像。
    在CATA模块中,令牌根据与
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值