文章目录
1 论文信息
FBRT-YOLO(Faster and Better for Real-Time Aerial Image Detection)是由北京理工大学团队提出的专用于航拍图像实时目标检测的创新框架,发表于AAAI 2025。论文针对航拍场景中小目标检测的核心难题展开研究,重点解决小目标因分辨率低、背景干扰多导致的定位困难,以及现有方法在实时性与精度间的失衡问题。
航拍图像目标检测是无人机、遥感监测等应用的关键技术,但面临独特挑战:图像中目标(如车辆、行人)通常仅由少量像素(<0.1%图像面积)构成,且易受云层、建筑群等复杂背景干扰。传统方法通过增加分辨率提升精度,但显著增加计算负担,难以满足嵌入式设备(如无人机芯片)的实时需求。FBRT-YOLO通过轻量化设计,在Visdrone、UAVDT和AI-TOD三大航拍数据集上实现了精度与速度的突破性平衡。
论文链接:
2 创新点
2.1 特征互补映射模块(FCM)
FCM模块致力于解决深层网络中小目标空间信息丢失这一根本问题。传统特征金字塔(如FPN)虽融合深浅层特征,但主干网络在传递过程中仍会弱化小目标的精确位置信息。FCM通过“<