【Graph vs Transformer】Transformer是GNN的一种特例

目录

1、简介

2、Transformer和GNN关系?

NLP 中的表示学习

Transformer 故障

多头注意力机制

尺度问题和前向传播子层

GNN 构建图展示

句子就是全连接词语的图

可以从 Transformers 和 GNN 学到什么?

为什么采用多头注意力?

3、GNN、Transformer和Graphormer关系?

GNN与Transformer的关系

1. 从连接结构的角度看

2.从公式的角度看

Transformer的简单介绍

简单地介绍一下GNN

GNN与Transformer的公式对比

Graph Transformer是什么 & 关联?

1. Graph Transformer是什么

2. Graph Transformer与GAT, Transformer之间的区别/关联

3. 为什么会有Graph Transformer

相对GNN、GAT的优缺点对比

相对Transformer的优缺点对比

Graph Transformer的简单回顾

早期的Graph Transformer

早期Graph Transformer的进阶1

早期Graph Transformer的进阶2

两篇经典Graph Transformer来入门之预告版

4、代码理解Graphormer(graph+transformer)

Preliminary

Graph Neural Network:

Transformer

Challenge

Graphormer

Centrality Encoding(中心性编码)

Spatial Encoding(空间编码)

Edge Encoding(边信息编码)

不足及展望方向

5、参考


1、简介

最近研读Transformer后,发现和GNN极其相似,于是开始调研他们之间的关系

2、Transformer和GNN关系?

Transformer和GNN有什么关系?一开始可能并不明显。但是通过这篇文章,你会从GNN的角度看待Transformer的架构,对于原理有更清楚的认知。

选自NTU Graph Deep Learning Lab,作者:Chaitanya Joshi,机器之心编译,参与:一鸣、杜伟、Jamin。

有的工程师会问这个问题:图深度学习听起来不错,但是有没有商业上的成功案例?它是否已经

### Graph Transformer 模型架构 Graph Transformer 结合了图神经网络 (GNN) 和 Transformer 架构的优点,旨在处理复杂的图结构化数据。传统 GNN 主要关注局部邻域聚合操作,而 Graph Transformer 则引入全局注意力机制来捕捉节点之间的远距离依赖关系[^2]。 #### 编码器部分 编码器由多层堆叠而成,每一层都包含两个主要子模块:一个多头自注意力机制(Multi-head Self-Attention Mechanism),用于计算节点间的关系权重;以及一个前馈全连接网络(Feed Forward Neural Network)。这种设计允许模型同时考虑局部特征和全局上下文信息。 ```python class GraphTransformerLayer(nn.Module): def __init__(self, d_model, num_heads, dropout=0.1): super(GraphTransformerLayer, self).__init__() self.self_attn = MultiHeadedAttention(num_heads=num_heads, d_model=d_model) self.feed_forward = PositionwiseFeedForward(d_model=d_model) def forward(self, x, adj_matrix): attn_output = self.self_attn(x, mask=adj_matrix) output = self.feed_forward(attn_output) return output ``` ### 原理分析 Graph Transformer 的核心在于如何有效融合图结构信息与序列建模能力: - **位置编码**:为了保留原始图中的拓扑特性,通常会采用拉普拉斯特征映射或其他形式的位置编码方案替代标准的正弦波位置编码。 - **边属性增强**:除了基本的节点表示外,还可以利用额外的边属性向量作为输入的一部分参与计算,从而更好地刻画复杂交互模式。 - **层次化池化策略**:针对大规模稀疏图场景下的效率优化问题,提出了多种新颖高效的采样/聚集算法,如ClusterGCN、SAGEPooling等技术。 ### 应用领域 目前,Graph Transformer 已经被广泛应用于多个实际应用场景中,特别是在社交网络分析、推荐系统构建等方面表现出色。具体来说: - 社交媒体平台可以通过该类模型更精准地理解用户行为偏好并据此推送个性化内容; - 生物医学研究者能够借助其强大的表征学习功能加速药物发现过程中的分子性质预测工作。 此外,在自然语言处理任务里也有着不俗的表现——比如文档分类、问答匹配等问题都可以视为特殊的“带标签”的图结构来进行求解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静喜欢大白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值