低精度训练2:半精度训练与LLaMA2训练实战

半精度介绍

  • 什么是半精度

    • 半精度FP16(half precision)是一种浮点数格式,它使用16bit表示一个数字(2个字节)
    • 在训练过程中,启用半精度训练可以有效节约显存,并提升计算速度
      在这里插入图片描述
  • 什么是半精度

    • 半精度FP16(half precision)是一种浮点数格式,它只占用16位(2个字节)
    • 在计算过程中的问题,可能存在溢出问题和舍入问题,可以使用bf16替代
      在这里插入图片描述

如何启用半精度训练

  • 如何启用半精度训练
    • 方式一
      • 模型加载后调用half方法将单精度模型转为半精度模型
      • model=model.half()
    • 方式二(推荐)
      • 模型加载时,指定torch_dtype参数为torch
### DeepSeek 模型训练成本低的原因 DeepSeek 模型之所以能够实现较低的训练成本,主要得益于以下几个方面的技术创新技术优化: #### 1. **FP8 数据精度** DeepSeek V3 的核心优势在于其支持 FP8(Float Precision 8-bit)数据格式。相比传统的 FP16 或 BF16,FP8 能够显著减少计算所需的内存带宽存储需求,从而提高硬件资源的利用效率并降低能耗[^1]。 #### 2. **模型架构优化** DeepSeek 在模型设计上采用了混合专家模型(MoE, Mixture of Experts)架构。这种架构允许模型将不同的任务分配给专门的子模块来处理,而不是让整个网络承担所有任务。这种方式不仅提高了资源利用率,还减少了冗余计算,进一步降低了训练开销[^3]。 #### 3. **低成本硬件配置** DeepSeek V3 的训练过程仅需使用 2048 块 H800 GPU 集群即可完成,而其他顶级模型可能需要上万块更昂贵的 H100 GPU。由于 H800 性能适中且价格相对低廉,因此整体硬件投入得以大幅削减[^3]。 #### 4. **纯强化学习路径** 不同于传统大模型通常经历监督学习微调(SFT)后再转入强化学习(RL)的方式,DeepSeek-R1 完全跳过了 SFT 阶段,直接基于纯 RL 进行训练。这种方法类似于直接进入实战演练而非先练习固定套路,既缩短了训练周期又节省了大量算力消耗[^4]。 #### 5. **训练成本对比** 从具体数字来看,DeepSeek V3 的训练成本约为 557.6 万美元,远低于此前动辄数千甚至上亿美元级别的 LLM 训练费用。例如,LLaMA 3.1 的训练成本大约为 4684.8 万美元,而 GPT-4o 则达到了惊人的 1 亿美元级别。相比之下,DeepSeek 实现了超过十倍的成本缩减[^2]。 ```python # 对比不同模型的训练成本 costs = { "DeepSeek V3": 557.6e6, "LLaMA 3.1": 4684.8e6, "GPT-4o": 1e9 } print(f"DeepSeek V3 Training Cost Reduction Factor: {costs['LLaMA 3.1'] / costs['DeepSeek V3']:,.1f}x") ``` 以上因素共同作用使得 DeepSeek 成功突破了以往高昂的训练壁垒,成为当前最具性价比的大规模 AI 模型之一。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蒋的学习笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值