华为OD机试真题——组装最大可靠性设备(2025B卷:200分)Java/python/JavaScript/C++最佳实现

在这里插入图片描述

2025 B卷 200分 题型

本专栏内全部题目均提供Java、python、JavaScript、C++等多种语言的最佳实现方式;
并且每种语言均涵盖详细的问题分析、解题思路、代码实现、代码详解、3个测试用例以及综合分析;
本文收录于专栏:《2025华为OD真题目录+全流程解析+备考攻略+经验分享

华为OD机试真题《组装最大可靠性设备》:


文章快捷目录

题目描述及说明

Java

python

JavaScript

C++


题目名称:组装最大可靠性设备


  1. 知识点:二分查找、贪心算法、组合优化
  2. 时间限制:1秒
  3. 空间限制:256MB
  4. 限定语言:不限

题目描述

一个设备由N种类型元器件组成(每种类型元器件只需要一个,类型编号为0~N-1)。每个元器件有两个属性:可靠性(reliability)和价格(price),其中可靠性越高的器件价格越贵。设备的整体可靠性由所有元器件中可靠性最低的一个决定。

给定预算S,需购买N种元器件(每种类型必须选一个),在不超过预算的情况下,求能组成的设备的最大可靠性。若预算无法购买N种器件,返回-1。

输入描述

  • 第一行:预算S和元器件种类数N(空格分隔)。
  • 第二行:元器件总数total。
  • 后续total行:每行包含元器件的类型type、可靠性reliability、价格price(空格分隔)。

输出描述
符合预算的设备最大可靠性,无法满足则返回-1。

示例1
输入:

500 3  
6  
0 80 100  
0 90 200  
1 50 50  
1 70 210  
2 50 100  
2 60 150  

输出:

60  

说明:选择类型0的第一个(可靠性80)、类型1的第二个(可靠性70)、类型2的第二个(可靠性60),总成本100+210+150=460≤500,设备可靠性为min(80,70,60)=60。

示例2
输入:

100 1  
1  
0 90 200  

输出:

-1  

说明:仅需1个元件但价格超预算。

补充说明

  • 0 ≤ S, price ≤ 10,000,000;0 ≤ N ≤ 100;0 ≤ total ≤ 10,000;0 < reliability ≤ 100,000。

Java

问题分析

我们需要在预算内为每种类型的元器件选择一个,使得设备的可靠性(所有元器件可靠性的最小值)最大化。设备可靠性由最低可靠性的元器件决定,因此我们需要在满足预算约束下最大化这个最小值。

解题思路

  1. 数据结构设计

    • 使用Component类存储元器件的可靠性和价格
    • 为每种类型维护元器件列表
  2. 预处理

    • 对每种类型的元器件按可靠性升序排序
    • 计算每种类型的后缀最小值数组(从后往前计算最小价格)
  3. 二分查找

    • 下界:1(最小可靠性)
    • 上界:所有类型最大可靠性的最小值
    • 对每个候选可靠性mid,检查是否存在满足条件的元器件组合
  4. 可行性检查

    • 对每种类型,二分查找第一个可靠性≥mid的元器件
    • 使用后缀最小值数组获取满足条件的最低价格
    • 计算总价格是否在预算内

代码实现

import java.util.*;

public class Main {
   
    static class Component {
   
        int reliability;
        long price;
        
        public Component(int reliability, long price) {
   
            this.reliability = reliability;
            this.price = price;
        }
    }

    public static void main(String[] args) {
   
        Scanner sc = new Scanner(System.in);
        // 读取预算和元器件类型数
        long S = sc.nextLong();
        int N = sc.nextInt();
        int total = sc.nextInt();
        
        // 处理N=0的特殊情况
        if (N == 0) {
   
            System.out.println(0);
            return;
        }
        
        // 初始化每种类型的元器件列表
        List<List<Component>> componentsByType = new ArrayList<>();
        for (int i = 0; i < N; i++) {
   
            componentsByType.add(new ArrayList<>());
        }
        
        // 读取所有元器件
        for (int i = 0; i < total; i++) {
   
            int type = sc.nextInt();
            int reliability = sc.nextInt();
            long price = sc.nextLong();
            // 将元器件添加到对应类型的列表
            if (type >= 0 && type < N) {
   
                componentsByType.get(type).add(new Component(reliability, price));
            }
        }
        
        // 检查每种类型是否有元器件
        for (int i = 0; i < N; i++) {
   
            if (componentsByType.get(i).isEmpty()) {
   
                System.out.println(-1);
                return;
            }
        }
        
        // 存储排序后的元器件列表
        List<List<Component>> sortedComponents = new ArrayList<>();
        // 存储每种类型的后缀最小值数组
        List<long[]> minPriceSuffix = new ArrayList<>();
        // 计算上界(所有类型最大可靠性的最小值)
        long high = Long.MAX_VALUE;
        
        // 处理每种类型的元器件
        for (int i = 0; i < N; i++) {
   
            List<Component> list = componentsByType.get(i);
            // 按可靠性升序排序
            Collections.sort(list, (a, b) -> {
   
                if (a.reliability != b.reliability) {
   
                    return Integer.compare(a.reliability, b.reliability);
                }
                return Long.compare(a.price, b.price);
            });
            sortedComponents.add(list);
            
            // 更新上界
            int lastIdx = list.size() - 1;
            high = Math.min(high, list.get(lastIdx).reliability);
            
            // 计算后缀最小值数组
            long[] suffixMin = new long[list.size()];
            suffixMin[list.size() - 1] = list.get(list.size() - 1).price;
            for (int j = list.size() - 2; j >= 0; j--) {
   
                suffixMin[j] = Math.min(list.get(j).price, suffixMin[j + 1]);
            }
            minPriceSuffix.add(suffixMin);
        }
        
        long low = 1; // 可靠性最小值为1
        long ans = -1; // 初始答案
        
        // 二分查找最大可靠性
        while (low <= high) {
   
            long mid = (low + high) / 2;
            long totalCost = 0;
            boolean valid = true;
            
            // 检查每种类型
            for (int i = 0; i < N; i++) {
   
                List<Component> list = sortedComponents.get(i);
                // 二分查找第一个可靠性≥mid的元器件
                int pos = firstGreaterEqual(list, mid);
                
                if (pos == list.size()) {
   
                    valid = false; // 没有满足条件的元器件
                    break;
                }
                
                // 累加最低价格
                totalCost += minPriceSuffix.get
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

纪元A梦

再小的支持也是一种动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值