【R语言数据科学】(二十五):bagging和随机森林

本文介绍了如何使用R语言的randomForest包实施bagging和随机森林算法,通过波士顿数据集展示了bagging在降低预测误差方面优于单一回归树的效果。讨论了mtry参数对模型的影响,并通过varImpPlot()函数分析了变量的重要性,指出lstat和rm是影响房价的最重要因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【R语言数据科学】:bagging和随机森林


  • 🌸个人主页:JOJO数据科学
  • 📝个人介绍:统计学top3高校统计学硕士在读
  • 💌如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏
  • ✨本文收录于【R语言数据科学】本系列主要介绍R语言在数据科学领域的应用包括:
    R语言编程基础、R语言可视化、R语言进行数据操作、R语言建模、R语言机器学习算法实现、R语言统计理论方法实现。本系列会坚持完成下去,请大家多多关注点赞支持,一起学习~,尽量坚持每周持续更新,欢迎大家订阅交流学习!

请添加图片描述

Bagging and Random Forests

在这里,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JOJO数据科学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值