【动手学因果推断】(五):因果数据导入与探索性分析

本文通过R语言探讨如何对观察数据进行因果推断,以研究2018年迪士尼魔法王国'额外魔法时间'与景点等待时间的关系。文章介绍了数据整理、缺失数据识别和探索性分析,重点关注正向性假设的验证,展示了如何使用统计方法处理因果问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


在这里插入图片描述

回答因果问题对于科学研究和商业分析至关重要,但随机临床试验和 A/B 测试等技术并不总是实用。本文通过R对观察数据进行因果推断。

1.数据介绍

本文将使用从 touringplans中获得的数据。 Touring Plans 是一家帮助人们计划迪士尼和环球主题公园之旅的公司。他们的目标之一是利用数据和统计模型准确预测这些主题公园的景点等待时间。 touringplans 包含多个数据集,其中包含有关迪士尼主题公园景点的信息。可以通过运行以下命令找到包中包含的景点摘要:

library(touringplans)
attractions_metadata
# A tibble: 14 × 8
   dataset_name name  short_name park  land  opened_on 
   <chr>        <chr> <chr>      &l
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JOJO数据科学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值