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Figure 1. Textured 3D Mesh Generation from 3D Semantic Layouts and Text Prompts. Given a textual description of the overall room
style and a rough 3D room layout based on 3D semantic bounding boxes, our method called ControlRoom3D creates diverse and globally
plausible 3D room meshes which align well with the room layout.

Abstract
Manually creating 3D environments for AR/VR appli-

cations is a complex process requiring expert knowledge
in 3D modeling software. Pioneering works facilitate this
process by generating room meshes conditioned on textual
style descriptions. Yet, many of these automatically gener-
ated 3D meshes do not adhere to typical room layouts, com-
promising their plausibility, e.g., by placing several beds in
one bedroom. To address these challenges, we present Con-
trolRoom3D, a novel method to generate high-quality room
meshes. Central to our approach is a user-defined 3D se-
mantic proxy room that outlines a rough room layout based
on semantic bounding boxes and a textual description of the
overall room style. Our key insight is that when rendered
to 2D, this 3D representation provides valuable geometric
and semantic information to control powerful 2D models to
generate 3D consistent textures and geometry that aligns
well with the proxy room. Backed up by an extensive study
including quantitative metrics and qualitative user evalu-
ations, our method generates diverse and globally plausi-
ble 3D room meshes, thus empowering users to design 3D
rooms effortlessly without specialized knowledge.

∗ Work performed during an internship at Meta GenAI.

1. Introduction

Generating high-quality mesh representations of 3D scenes
is essential for creating immersive experiences in AR/VR
applications. However, manually synthesizing these 3D en-
vironments is a complex task that requires expertise in 3D
modeling software [1, 17], posing a substantial barrier for
end-users looking to create personalized scenes. Fueled by
the recent progress in 2D generative models [13, 19, 39, 45],
an emerging line of work aims to simplify the creation pro-
cess of 3D objects [9, 26, 48, 52, 53] or even room-scale
scenes [10, 15, 20, 57]. Among them, the recent work
of Text2Room [20] creates compelling textured 3D room-
scale meshes using a text prompt describing the scene and
an off-the-shelf text-to-image model [39]. This is achieved
by iteratively inpainting missing 2D regions of the rendered
3D mesh from a novel viewpoint. Subsequently, depth is
estimated for the new content, followed by backprojection
and fusion with the current 3D mesh. Despite Text2Room’s
ability to generate locally convincing meshes with detailed
textures, it suffers from two crucial shortcomings due to its
iterative mesh inpainting strategy solely based on local con-
text: First, Text2Room does not follow conventional room
layouts, yielding unrealistic spatial arrangements of objects
and walls. Secondly, it tends to duplicate the most promi-
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nent objects of a scene type,e.g., placing several beds into a
single bedroom, leading to semantically implausible scenes.

To address these shortcomings, we proposeControl-
Room3D, which generates diverse and globally plausible
3D room meshes. A central element of our method is the
3D semantic proxy room (Fig. 1,) which allows the user
to specify semantic bounding boxes and textual descriptions
of the desired room style that then serve as a rough outline
for the generated room layout. Our key insight is that this
3D representation, when rendered to 2D, provides valuable
geometric and semantic information. This information can
be used to control powerful 2D generative models, enabling
the creation of 3D consistent textures and geometry that
align with the proxy room. However, projecting 3D con-
trols to 2D comes with a loss of information which needs to
be properly addressed. As naively generating 2D viewsin-
dividually is detrimental for scene style consistency, we �rst
present a novel panorama generation method, which gener-
ates a comprehensive 360� view of the room. Leveraging
homographic constraints between equirectangular patches,
we equip a latent diffusion model with correspondence-
aware attention modules [49] which establish a coherent
and seamless style, while faithfully adhering to the pro-
jected semantics of the user-provided 3D proxy room. Next,
the quality of depth estimation becomes pivotal for con-
verting this panorama into a 3D representation that aligns
with the proxy room. Building upon our insight that the 3D
proxy room offers not only semantic but also valuable ge-
ometric information, we introduce a novel geometry align-
ment approach which leverages the spatial dimensions of
3D bounding boxes in an iterative optimization strategy to
support a metric depth estimation network [6] to generate
3D structures which align with the proxy room. Thirdly,
while panoramic views are valuable, they are insuf�cient
for a complete 3D scene. To address issues like occlusion
and low-resolution textures, our method �rst eliminates low
density regions, then uses new viewpoints for inpainting,
guided by the proxy room and our geometry alignment, thus
integrating new geometry into the mesh seamlessly.

To summarize, our contributions are:(1) We propose
ControlRoom3Dwhich generates diverse and semantically
plausible 3D room meshes aligning well with the user-
de�ned room layout and textual description of the room
style. (2) Leveraging our key insight that this room layout
provides both valuable semantic and geometric priors, we
present technical components including the semantic proxy
room, guided panorama generation, mesh completion, and
geometry alignment to enable coherent and seamless 3D
textures and geometry.(3)Using both quantitative and qual-
itative metrics, we validate the effectiveness of each compo-
nent introduced and show that our method generates more
plausible 3D rooms compared to competing methods.

2. Related Work

Text-to-3D. Fueled by the availability of large-scale vision-
text datasets [21, 31, 42–44, 51, 56] and powerful vision-
language models [34], recent advancements in 2D diffu-
sion models [5, 11, 30, 35, 39, 40] have signi�cantly con-
tributed to the ongoing progress in generating 3D objects
and scenes. In particular, one prominent research direction
focuses on single object synthesis [26, 29, 33, 48, 53, 57],
wherein a differentiable 3D representation [22, 28] is com-
monly optimized through a loss signal derived from the de-
noising of rendered views [33, 52, 53]. Despite achiev-
ing impressive results in the synthesis of object-centric
scenes, the challenge of generalizing these techniques to
large and complex scenes persists [53]. Typically, existing
approaches rely on additional 3D data sources [3, 4, 12],
which are challenging to obtain at scale. Two notable
approaches related to our work include SceneScape [15]
and Text2Room [20]. These methods leverage off-the-
shelf text-conditioned inpainting models [39] in combi-
nation with state-of-the-art monodepth estimation mod-
els [2, 36] to create a 3D mesh representation. Alternatively,
LDM3D [47] directly predicts an RGBD frame based on a
given text prompt. However, these approaches have lim-
ited control over the generation process by only being able
to change the text prompt at each inpainting step, typically
leading to globally implausible room layouts. In contrast,
ControlRoom3D allows precise control over the scene com-
position by using globally consistent 2D maps derived from
3D semantic proxy rooms to guide the generation process.

Semantically Guided 3D Scene Generation.An emerging
line of works investigates scene generation with semantic
compositing [8, 14, 16, 25, 39, 54, 55]. However, in 3D they
are typically constrained to low resolution textures and par-
tial room settings to enable inward-facing views [10, 32, 57]
or require synthetic 3D datasets and thus are restricted to
the room style present in the dataset [3]. At the same time,
current diffusion models show great capabilities to be ex-
tended by control signals such as pixel-perfect maps, key-
points or bounding boxes [8, 25, 54, 55, 58]. We follow this
line of work and show that 2D control signals derived from
a 3D representation can be used to produce 3D consistent
high-resolution images of large diversity without the need
of inward-facing views.

Mesh Texturization. A related line of work deals with re-
texturizing a given mesh representation of 3D scenes [46,
49] or objects [27] using a stylization text prompt. Unlike
ControlRoom3D, these methods focus on re-texturizing the
mesh in a novel style without (or only minor adaptations)
to the original geometry while our approach not only gener-
ates stylized textures but also creates novel geometryfrom
scratchwhich aligns with the style of the texture.
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Figure 2.Method Overview. The3D semantic proxy room contains a user-de�ned 3D room layout based on semantic bounding boxes
and a textual description of the overall room style. From this representation, we derive control signals that ensure 3D consistent textures
and align corresponding depth estimates with the room layout. Thepanorama generation modulegenerates a comprehensive 360� view
of the room, the depth of which is then estimated and aligned with the proxy room. After Poisson reconstruction and artifact cleaning,
we update the room mesh by iteratively completing partial renderings of the sceneand estimating the depth of newly added textures.

3. Method

Overview. (Fig. 2) Given a textual description of the over-
all room style and a rough 3D room layout based on 3D
semantic bounding boxes, ControlRoom3D creates diverse
and globally plausible 3D room meshes which align well
with the room layouts. The key technical components of
our method comprise theproxy room , from which we
derive 2D semantic and guidance depth maps for arbitrary
viewpoints in the scene; thegeometry alignment module,
to align newly generated 2D views to the proxy room; the
panorama generation module, to initially generate a glob-
ally style-consistent 360� view of the scene; and a �nal
completion module , which samples novel camera view-
points to inpaint occluded and unobserved regions in the
mesh with high-resolution textures. Details of each of these
steps are discussed in the following sections, and we high-
light each component with its corresponding color of Fig. 2.

3D Semantic Proxy Room. (Fig. 2, ) At the core of
our method lies the user-de�ned 3D semantic proxy room,
which acts as a rough outline for the room layout and is
de�ned by semantic bounding boxes and a textual descrip-
tion of the desired room style. Speci�cally, we de�ne
a proxy roomM as a set of semantic bounding boxes
B = ( p; s; c; i), wherep 2 R3 is the box center,s 2 R3

the box size,c the semantic class id, andi the unique in-
stance id associated with each box. Our key insight is that

Figure 3.Proxy Room Renderings.We use classical rasterization
to render semantic segmentation and instance maps as well as near
and far depth maps from the proxy room.

this 3D representation, when rendered to 2D, provides valu-
able geometric and semantic information that can be used
to control powerful 2D generative models, enabling the cre-
ation of 3D consistent textures and geometry that align with
the proxy room. We render the proxy scene from a given
viewpointV , producing multiple types of frames:

S; I; D n ; D f = r (M ; V )

Here,r (�) is standard rasterization without shading, the out-
puts S2[1; C]H � W , I 2N H � W , Dn ; D f 2RH � W

+ are the
rendered 2D semantic segmentation map ofC classes, the
instance segmentation map, and the near and far guidance
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