最近,“Vibe Coding”概念不仅在程序员圈子爆火,还激起了千层浪。各大科技巨头以前所未有的速度亮出了自己的“王牌”:字节跳动的Trae、阿里的通义灵码、百度的秒哒、创业新星Clacky AI……一时间,关于“AI将取代程序员”的讨论也是甚嚣尘上,风声鹤唳。
这究竟是资本市场炒作的又一个泡沫,还是一场颠覆性的编程新范式革命?真实的AI Coding到底已经发展到了什么阶段,能不能做到“一个人干掉整个技术部门”?本文就来深入聊聊这个话题。
01
炒概念 or 编程新范式
1、什么是Vibe Coding?
“Vibe Coding”这个词直译过来是“氛围感编程”或“凭感觉编程”。它描绘的是一种全新的编程交互方式:你不再需要像过去那样,逐字逐句地给计算机下达精确、无歧义的指令。相反,你只需要用自然语言,描述出你想要实现功能的“感觉”、“氛围”或“大致意图”,AI就能心领神会,为你生成完整的代码。
做个对比大家就更容易理解了。如果我们用传统模式编程,你需要告诉计算机,“创建一个函数,接受一个整数数组作为参数,使用冒泡排序算法对其进行升序排序,然后返回排序后的数组。” 每一个逻辑、每一个步骤都必须清晰明确。而如果采用Vibe Coding,你可能只需要对AI说,“给我写个排序算法,简单点就行,能跑通就行。” 甚至更模糊:“我这有一堆数据,帮我理一理,让它们从小到大排个队。”这背后是大型语言模型强大的自然语言理解和代码生成能力。它正在越来越有效地弥合人类模糊、感性的意图与计算机严谨、精确的逻辑之间的鸿沟。
2、AI Coding的两种产品形态
目前,承载这种能力的AI Coding工具,其产品形态已然有了较为清晰分野,主要沿着两条路径演进:一种是无缝融入开发者现有工作流的AI原生IDE,另一种则是致力于将“一句话编程”变为现实的纯对话式平台。
1)IDE形态:
以字节的 Trae、国外的 Cursor 和阿里的通义灵码为代表,这类工具在界面布局上呈现出一定的 “趋同性”。它们都具备文件资源管理、代码编辑和 AI 交互的功能区域。Trae 和通义灵码采用了类似经典的三栏式结构:左侧是文件资源管理器和项目大纲,中央是核心的代码编辑区,右侧则固定为与 AI 对话的 Chat 栏(Cursor 的界面布局与此有所不同),这种设计并非巧合或缺乏创意,而是对专业开发者工作习惯的深刻理解和尊重。熟悉的界面范式能极大降低学习成本,让程序员可以专注于 “指挥 AI” 而非 “学习工具”。
该形态交互的核心在于人与AI的协作。开发者既可以在右侧Chat栏与AI进行问答式交流,也可以在中间的代码编辑区选中任意代码片段,直接调用AI进行重构、解释或修复。当然,即使在相似的框架下,不同产品在细节和哲学上却各有侧重。比如,在Cursor中,你可以直接在终端里用自然语言指挥AI;而在Trae中,同样的操作则需要切换到右侧的Chat栏来完成。
2)对话形态
如果说AI原生IDE是让程序员变身“代码指挥官”,那么以美团的NoCode、Lovable为代表的对话式平台,就是普通人的“梦想实现机”。它们将“Vibe Coding”的理念做了更为极致的发挥。这类产品的界面设计极其简洁,核心往往就是一个醒目的对话框。当我们丢给他一个任务给时,他们的响应方式会与上面介绍的IDE形态的工具完全不同。
比如,我们让将一个“生成贪吃蛇游戏”的任务同时交给Trae和NoCode, Trae 会像一个严谨的工程师那样,按部就班地生成代码。如果涉及到外部Python库,它会主动提示用户下载;AI修改代码后,也会提请用户进行审查。整个流程严谨、规范,控制权始终在用户手中。而NoCode 则更倾向于“全权委托”。用户输入需求后,只需静待片刻,AI便会输出一个可运行的预览结果。它隐藏了所有中间过程,致力于提供一种“魔法般”的体验。
总而言之,AI Coding的两种产品形态,正朝着两个方向分化:一个致力于深度赋能专业开发者,提升其生产力上限;另一个则专注于降低创造门槛,让每一个有想法的人都能参与到软件开发这场游戏中来。
02
复杂编程领域,所有AI通过率是0%
尽管 AI 编程在一些基础场景下表现出色,但在复杂编程领域,却面临严峻挑战。在一项由国际算法奥赛金牌得主团队推出的 LiveCodeBench Pro 基准测试中,包括GPT-4o、DeepSeek R1、Claude 3在内的20个顶级大模型,在面对高难度编程赛题时,通过率竟然为0。
这并非因为AI“笨”,而是因为真实世界的软件开发,远比教科书上的算法题复杂得多。LiveCodeBench Pro所模拟的正是这种工业级的复杂性,比如它要求AI处理跨越多文件的依赖关系,理解并管理复杂的第三方库,甚至应对因版本迭代造成的API不兼容问题等等。这就像一个刚在驾校训练场学会倒车入库的学员,被直接扔上了晚高峰的立交桥,瞬间迷失在复杂的路况和导航指令中,一点也不奇怪。
能力上局限性还不是最可怕的,更令人忧虑的是,AI正在成为新的安全漏洞制造机。GitHub Copilot 曾因训练数据合法性陷入诉讼;武汉大学等六所高校也曾指出 Copilot 生成的代码可能包含安全漏洞;今年3月,AI 编程软件 Lovable 也被发现,使用其构建的应用存在泄露用户个人信息及客户密码的风险。而作为开发者,Lovable给出的回应更是细思极恐:“这并非自家独有,任何面向非专业开发者的AI编程产品都面临类似的问题。” 这无异于承认,整个行业都在生产带有潜在风险的工具……
根据Cloudsmith发布的《2024 Artifact管理报告》,有三分之一的开发人员在每次部署前,并未审查AI生成的代码。结合上面提到的这些事件,都凸显了AI 编程在安全方面的重大隐忧,即审查环节的薄弱和缺失。这也提醒我们,要避免陷入“自动化偏见”的陷阱,不能被AI貌似权威、流畅输出给唬住,而放松了警惕和审核,埋下安全的“地雷”。
03
AI Coding的“技术成熟度”如何?
为了更精确地定位AI Coding当前所处的阶段,可以借鉴已被广泛接受的自动驾驶的技术分级体系(L1-L5),为AI Coding构建一个类似的体系,帮助我们更好地认清AI Coding的技术成熟度从“辅助驾驶”到“完全无人驾驶”中间,还隔着多远的距离。
L1:代码辅助
主要功能是提供基础的代码高亮、语法检查、简单的代码片段补全。可以类比为汽车的“定速巡航”。这是IDE已经实现的功能,相对比较成熟。
L2:部分代码生成
AI能够根据上下文,生成单行或多行的代码块、函数等。但开发者需要对每一行生成的代码进行审查和确认,是绝对的责任主体。有点类似汽车的“自适应巡航(ACC)”和“车道保持辅助(LKA)”,驾驶员必须时刻手握方向盘,观察路况。这也是当前绝大多数AI Coding工具所处的阶段。
L3:有条件代码自动化
AI可以独立完成一个完整的功能模块或一个类的编写,甚至进行一些简单的重构。在特定、定义明确的场景下,AI可以“托管”编程任务,但开发者需要随时准备接管。就像汽车的“拥堵路段自动驾驶”。在特定条件下(如高速公路),车辆可以自动驾驶,但驾驶员必须保持警惕,随时准备接手。
目前,部分先进的对话式AI Coding工具(如Cursor)和通过精心设计的Prompt工程,正在向L3发起冲击。开发者可以把一个完整的需求“委托”给AI,但仍需对其最终产出进行细致的测试和修改。我们正处于从L2向L3过渡的探索期。
L4:高度代码自动化
在限定的领域和项目类型中,AI可以独立完成从需求理解、架构设计、代码实现到测试部署的全流程。人类只需在特定环节进行监督或审批。有点像在特定区域运行的“自动驾驶出租车”,它可以在这个区域内完全自主行驶,无需人类干预。这是未来的目标,目前尚未实现。它需要AI具备强大的项目管理能力、架构设计能力和对复杂业务的深度理解。
L5:完全代码自动化
AI可以理解任何模糊的商业需求,自主完成任何类型软件的全生命周期开发。人类只需要提出想法。这才是真正意义上可以在任何天气、任何道路上安全行驶的“完全自动驾驶汽车”,
也是AI Coding的终极理想。
通过这个分级,我们不难发现,当前我们正站在L2的台阶上,并努力向L3迈出一条腿。 距离L4,乃至L5的“一个人干掉研发部”的时代,还存在巨大的技术鸿沟和信任鸿沟需要跨越。
04
国内AI Coding工具速览
近年来,国内的 AI 编程工具取得了显著进步,逐渐在市场中崭露头角,比如:
字节跳动的Trae,以 Builder 模式颠覆编程流程,月活用户突破 100 万,并且近期还开放了 MCP 工具协议,实现了设计工具与代码的无缝衔接。
阿里的通义灵码,插件下载量突破 1500 万,生成代码超 30 亿行,其 AI 原生 IDE Lingma 深度集成 Qwen3 大模型,接入国内最大魔搭 MCP 市场,构建智能开发生态。
百度的秒哒,定位非技术用户,通过多智能体协作实现纯对话式应用生成,践行 “让想法直接变成产品” 的理念。
Clacky AI 则是开发者的云端开发搭档,具备 L3 级别自主能力,全面支持主流开发栈,具备结构化任务拆解、多线程协作推进以及自我排查与修复能力。
商汤的代码小浣熊,K哥之前写过测评文章,这是商汤科技推出的基于大模型和轻量化引擎的AI编程工具,提供代码生成、补全、解释等功能,支持 Python、C++、Java 等 25 种编程语言,适配 jetbrains、VScode、MindStudio 等主流 IDE。这些工具的出现,不仅为国内开发者提供了更多选择,也在一定程度上推动了 AI 编程技术的发展。
国外的 AI 编程工具像Cursor、Windsurf、Claude Code、GitHub Copilot 等,同样实力非凡。比如, GitHub Copilot 依然是全球范围内,该领域的开创者和事实上的标准制定者,而 Cursor 则以其“AI-First”的IDE形态,在高端开发者圈层中获得了极高的声誉。
回到开头那个让不少程序员夜不能寐的问题:一个人干掉整个技术研发部门的时代来了吗?K哥的答案是:没有,而且在可预见的未来,也不会。AI Coding的主要意义,是将程序员从大量重复繁琐的“体力劳动”中解放出来,让他们工作的核心价值,发生深刻且必要的转变,而不是完全干掉程序员。
如果非说要“干掉”谁,那也是淘汰某些拒绝学习、固步自封的“代码工人”,但同时,它也会赋能那些拥抱变化、善用工具的“软件建筑师”,帮助他们去构建更宏伟、更复杂的数字世界。希望大家都是后者,共勉!
作者| Mr.K
编辑| Emma
号主简介
Mr.K,黄哲铿,「顿悟山丘」创始人,科技博主,曾担任海尔、中通快递、1药网技术高管,著有《技术人修炼之道》《技术管理之巅》。分享:AI产业观察、企业AI应用实践、领导者成长。
- END -
精选好文: