在大型模型(Large Models)的增强学习(Reinforcement Learning, RL)中,DPO、PPO、DRPO、DDPG是几种不同但又相互关联的算法,它们在模型的训练、优化和对齐(Alignment)中扮演着重要角色。下面将对这四种算法进行详细解析,并重点阐述它们与大型模型的关联。
1. PPO (Proximal Policy Optimization) - 近端策略优化
核心思想: PPO是一种On-policy(同策略)的Actor-Critic(行动者-评论者)强化学习算法。它旨在通过限制策略更新的幅度,在保持训练稳定性的同时,尽可能大地进行策略更新,以提高数据效率并避免策略过早收敛到局部最优。
工作原理:
- Actor-Critic架构:
- Actor (策略网络/Policy Network): 负责生成动作(在大型模型中,通常是生成下一个token的概率分布)。它接收当前状态(模型输入和已生成的token序列)作为输入,输出每个可能动作的概率。</