YOLO11改进 | 卷积模块 | 轻量化LDConv替换普通的Conv

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


本文给大家带来的教程是将YOLO11的Conv替换为LDConv结构来提取特征。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。 

专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

目录

1.论文

2. LDConv代码实现

2.1 将LDConv添加到YOLO11中

2.2 更改init.py文件

2.3 添加yaml文件

2.4 在task.py中进行注册

2.5 执行程序

3.修改后的网络结构图

4. 完整代码分享

### YOLOv11卷积改进 LDConv 的详细说明 #### 背景介绍 YOLOv11 引入了一种新的卷积模块——LDConv(Linear Deformable Convolution),该模块旨在提升卷积神经网络的性能。这种新型卷积操作通过线性可变形的方式增强了特征提取的能力。 #### LDConv 模块的工作原理 LDConv 是一种基于线性变换的可变形卷积方法,它允许卷积核在空间上自适应调整位置,从而更好地捕捉图像中的复杂结构和变化[^1]。具体来说: - **线性变换**:传统的卷积操作假设感受野内的像素分布是固定的,而 LDConv 则通过对输入特征图施加线性的位移来动态改变卷积核的位置。 - **可变形特性**:与标准卷积不同的是,LDConv 可以根据局部几何形变学习到更灵活的感受野形状,这有助于提高模型对于目标物体形态多样性和尺度差异的学习能力。 #### 实现方式 为了实现上述功能,LDConv 主要依赖于两个部分的设计: ##### 1. 偏置预测子网 偏置预测子网负责估计每个采样点相对于其原始网格坐标的偏移量。这些偏移向量被用于指导实际卷积过程中滤波器的应用位置。 ```python import torch.nn as nn class BiasPredictionNet(nn.Module): def __init__(self, in_channels, num_points=9): super(BiasPredictionNet, self).__init__() self.conv = nn.Conv2d(in_channels=in_channels, out_channels=num_points * 2, kernel_size=3, stride=1, padding=1) def forward(self, x): offset = self.conv(x) return offset.view(offset.size(0), -1, 2) # (N, H*W*num_points, 2) ``` ##### 2. 自定义卷积层 自定义卷积层实现了带有偏移补偿的标准二维卷积运算逻辑。在这个阶段,会利用之前计算得到的偏移值对输入张量执行重采样处理后再应用常规卷积操作。 ```python from torchvision.ops import deform_conv2d def ldconv(input_tensor, weight, bias=None, offsets=None): output = deform_conv2d( input=input_tensor, offset=offsets, weight=weight, bias=bias, stride=(1, 1), padding=(1, 1), dilation=(1, 1)) return output ``` 最后,在训练时可以通过 PyTorch 提供的功能轻松集成这两个组件并应用于整个网络架构之中[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值