作者及发刊详情
Li B , Pandey S , Fang H ,et al.FTRANS: energy-efficient acceleration of transformers using FPGA[J].ACM, 2020.DOI:10.1145/3370748.3406567.
摘要
正文
主要工作贡献
与CPU和GPU在执行Transformer和RoBERTa相比,提出的FTRANS框架获得了极低的成本和能耗。
先进的transformer架构的块循环矩阵压缩方法(block-circulant matrix, BCM)
处理了传统BCM压缩导致的精度损失,提出了先进的BCM压缩方法来减少transformer的权重
FPGA平台上transform的整体优化
在模型压缩的前提下,提出了一个两级优化方法,调度计算资源,优化延迟和吞吐率
降低硬件资源和能耗
提出了一个FPGA架构设计来支持模型压缩技术,开发了设计自动化和优化技术。
实验评估
实验验证平台:VCU118
选用模型: shallow Transformer和RoBERTa (base configuration)
- shallow Transformer
架构包括encoder和decoder。
使用WikiText-2数据集1任务进行评估,这是一个无监督的序列到序列的问题,需要解码器部分。 - RoBERTa
基本配置,预训练的Transformer架构,只有encoder
使用情绪分类任务划分,是一种监督学习,无需decoder
如图是两种模型的关键参数: