【论文解析】FTRANS: Energy-Efficient Acceleration of Transformers using FPGA

作者及发刊详情

Li B , Pandey S , Fang H ,et al.FTRANS: energy-efficient acceleration of transformers using FPGA[J].ACM, 2020.DOI:10.1145/3370748.3406567.

摘要

正文

主要工作贡献

与CPU和GPU在执行Transformer和RoBERTa相比,提出的FTRANS框架获得了极低的成本和能耗。

先进的transformer架构的块循环矩阵压缩方法(block-circulant matrix, BCM)

处理了传统BCM压缩导致的精度损失,提出了先进的BCM压缩方法来减少transformer的权重

FPGA平台上transform的整体优化

在模型压缩的前提下,提出了一个两级优化方法,调度计算资源,优化延迟和吞吐率

降低硬件资源和能耗

提出了一个FPGA架构设计来支持模型压缩技术,开发了设计自动化和优化技术。

实验评估

实验验证平台:VCU118

选用模型: shallow Transformer和RoBERTa (base configuration)

  1. shallow Transformer
    架构包括encoder和decoder。
    使用WikiText-2数据集1任务进行评估,这是一个无监督的序列到序列的问题,需要解码器部分。
  2. RoBERTa
    基本配置,预训练的Transformer架构,只有encoder
    使用情绪分类任务划分,是一种监督学习,无需decoder

如图是两种模型的关键参数:
在这里插入图片描述

工具:Xilinx SDX2017.1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KGback

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值