【论文阅读】INT-FP-QSim: Mixed Precision and Formats For Large Language Models and Vision Transformers

作者及发刊详情

Nair, Lakshmi, et al. INT-FP-QSim: Mixed Precision and Formats For Large Language Models and Vision Transformers. arXiv, 7 July 2023. arXiv.org, https://doi.org/10.48550/arXiv.2307.03712.

Motivation

大型语言模型(llm)的兴起导致了以较低的精度运行llm的研究增加,为了支持这一工作,提出了一个开源模拟器来测试大型语言模型和视觉transformer模型在不同数值精度级别下的运行效果。

Related work

(Background)

Appraoch

主要贡献

1)提出了INT-FP-QSim,一个开源的灵活的模拟器,以模型的网络层为单位作为量化对象,模拟不同的数值格式

2)研究了使用具有4位整数权重和8位浮点激活的混合数据格式的效果

3)研究了混合和低精度对各种模型和任务领域的影响,从传统的llm到计算机视觉和文本到图像生成的transformer模型。

数值格式及精度恢复

本文设置权重为4bit,可以是FP,也可以是INT
激活可以是4bit或8bit的FP和INT格式,具体设置为如下:
1)4bit INT
2)8bit INT
3)4bit FP,分别E2M1和E1M2
4)8bit FP,E4M3

量化必然会导致模型精度变差,可以采用如下方法恢复精度:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KGback

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值