作者及发刊详情
Nair, Lakshmi, et al. INT-FP-QSim: Mixed Precision and Formats For Large Language Models and Vision Transformers. arXiv, 7 July 2023. arXiv.org, https://doi.org/10.48550/arXiv.2307.03712.
Motivation
大型语言模型(llm)的兴起导致了以较低的精度运行llm的研究增加,为了支持这一工作,提出了一个开源模拟器来测试大型语言模型和视觉transformer模型在不同数值精度级别下的运行效果。
Related work
(Background)
Appraoch
主要贡献
1)提出了INT-FP-QSim,一个开源的灵活的模拟器,以模型的网络层为单位作为量化对象,模拟不同的数值格式
2)研究了使用具有4位整数权重和8位浮点激活的混合数据格式的效果
3)研究了混合和低精度对各种模型和任务领域的影响,从传统的llm到计算机视觉和文本到图像生成的transformer模型。
数值格式及精度恢复
本文设置权重为4bit,可以是FP,也可以是INT
激活可以是4bit或8bit的FP和INT格式,具体设置为如下:
1)4bit INT
2)8bit INT
3)4bit FP,分别E2M1和E1M2
4)8bit FP,E4M3
量化必然会导致模型精度变差,可以采用如下方法恢复精度: