自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

  • 博客(962)
  • 资源 (1)
  • 问答 (3)
  • 收藏
  • 关注

原创 机器学习 专栏

随着现在以ChatGPT为代表的大模型发展,人工智能、机器学习、大模型 这些词逐渐火热起来了,所以是时候了解一下这些东西了,可能有的人会说不会太晚了吗,其实不晚,因为我们从来都是技术的创造者,只是技术的使用者而已,在一定程度上来说,及时的学会使用,对普通人来说就足以过上不错的日子。但是伴随着老的生产力的落幕,必然有新的生产力出现,否则整个社会的发展就陷入了停滞,其实我们可以看到现在的AI 发展的这么快,每一轮的技术发展都会有一二十年的生命周期,我们只能说传统互联网走到了夕阳西下的时候。

2024-03-30 13:11:30 170946

原创 数据仓库实战教程

以hadoop 作为基础生态,从0到进行数仓建设,主要分为基础篇和实战篇两部分,基础篇主要是各种组件的学习和案例,实战篇主要是三家企业的数仓设计案例,最后是扩展篇主要是实时数仓。

2020-12-28 09:19:07 224111 18

原创 Java集合汇总篇

一. 集合框架Java 集合框架一些列的接口和类来实现很多常见的数据结构和算法,例如 LinkedList 就是集合框架提供的实现了双向链表的数据结构,关于这一篇文章建议大家收藏,我会不断地完善和扩充它的内容,例如最下面的系列文章我以后也会对它进行不断的更新集合框架的接口集合框架提供了很多接口,这些接口都包含了特定的方法来实现对集合上的特定操作)我们将要学习这些接口以及子接口和它们的各种实现类,在开始之前我们先简单学习一下这些广泛运用的接口,可以看到整个集合框架,总共有三个顶级接口Collecti

2020-12-13 20:25:05 223830 3

原创 大模型—— OpenStation 零代码快速部署DeepSeek-R1-0528超强版本

OpenStation推出零代码解决方案,帮助企业快速部署DeepSeek-R1-0528新版模型。该工具提供一站式大模型管理平台,支持标准OpenAI API接口,包含模型部署、服务分发、资源管理等核心功能。用户可通过可视化界面轻松完成模型部署,并实现集群资源扩缩容。OpenStation已适配DeepSeek最新版本,在数学推理、代码生成等方面性能显著提升。该开源工具还提供用户鉴权、负载均衡等服务管理功能,适合企业级应用场景。项目已开源,用户可访问Gitee获取详细使用指南和技术支持。

2025-06-06 13:26:38 12

原创 大模型——Dify实现AI智能体工作流实战手册,助你轻松整合大模型应用与开发工具

Dify是一款整合多款大模型与开发工具的低代码AI工作流编排平台。本文详细介绍了Dify的安装配置流程:首先部署OLLAMA本地推理模型(推荐DeepSeek-R1和nomic-embed-text),然后通过Docker安装Dify并进行环境配置。重点演示了如何添加OLLAMA、通义千问等模型供应商,并配置推理、Embedding、Rerank以及语音文本互转模型。与扣子工作流相比,Dify更具技术性,需要手动部署。最后指导用户完成智能体工作流的构建,为开发者提供强大的AI应用整合能力。

2025-06-03 21:48:21 145

原创 大模型—— AI 编程越来越厉害了 你要提高自己的系统架构能力

RAG(检索增强生成)、LangChain和Agent是AI大模型领域的三个关键技术。RAG通过"检索-整合-生成"机制提升模型生成质量,适用于专业领域和实时知识更新场景。LangChain是一个开源编排框架,提供模块化工具简化大模型应用开发。Agent则是能自主感知、决策和行动的智能实体。三者可协同工作:在LangChain框架中使用RAG技术支持Agent,使其完成特定任务流程。这种组合正推动着AI应用范围的不断扩大和能力提升。

2025-06-02 22:11:18 130

原创 大模型——一文看懂RAG、LangChain、Agent三者的关系

RAG(检索增强生成)、LangChain和Agent是AI大模型领域的三个关键技术。RAG通过"检索-整合-生成"机制提升模型生成质量,适用于专业领域和实时知识更新场景。LangChain是一个开源编排框架,提供模块化工具简化大模型应用开发。Agent则是能自主感知、决策和行动的智能实体。三者可协同工作:在LangChain框架中使用RAG技术支持Agent,使其完成特定任务流程。这种组合正推动着AI应用范围的不断扩大和能力提升。

2025-06-02 22:07:08 34

原创 大模型——MCP 深度解析

MCP 兑现了其承诺:只需为每个服务配置一次,而非构建两两之间的定制桥接。集成方式所需连接数直接 API(M×N)3×2=6MCP(M+N)3+2=5当组件扩展至 10 个主机和 10 个工具时,MCP 仅需 20 个适配器,而传统方式需 100 个。此外,JSON Schema 系统提升了工具可发现性:Cline 连接服务器时自动获取完整操作文档,无需查阅外部 API 参考。

2025-05-27 22:21:43 110

原创 大模型—— Prompt Engineering 提示词工程

定义:Prompt Engineering 是设计和优化输入提示(prompt)以获得预期输出的过程。在与大型语言模型交互时,如何构造提示会显著影响模型的回答质量。简单提示:“告诉我关于猫的事情。优化提示:“请详细描述猫的生物学特征、行为习惯以及它们在不同文化中的象征意义。通过优化提示,用户可以引导模型生成更详细和有用的回答。

2025-05-27 22:20:05 131

原创 大模型——AI合同单据识别-自定义字段信息抽取-小帮手更新

利用AI技术简化审计作业,提升合同单据信息抽取效率。之前阿里开源了多模态模型,在审计作业过程中针对大量的合同、单据检查,利用多模态大模型的能力,可以对不同形态、不同语言的各种非标合同完成关键信息抽取,并将结果结构化到底稿中。文件夹合同:当一个合同有多个图片,将读取某文件夹下的所有图片,整合至一起发送给AI进行识别此时,直接选择该文件夹即可单文件合同:当一个合同只有一张图片时,将读取该图片文件直接发送AI进行识别此时直接选择该文件即可。

2025-05-25 11:32:23 66

原创 大模型——一文带你快速了解A2A、MCP与ACP协议

ACP(Agent Communication Protocol,智能体通信协议)是一个开放标准,最初由 BeeAI 和 IBM 提出,旨在支持同一本地或边缘环境中多个 AI 智能体之间的结构化通信、发现与协调。与面向云的协议(如 A2A)或上下文路由协议(如 MCP)不同,ACP 专为本地优先(local-first)和实时智能体编排而设计,强调最小化网络开销,并实现运行时中多智能体之间的紧密集成。

2025-05-25 11:30:56 142

原创 大模型——Crawl4AI使用JsonCssExtractionStrategy进行结构化数据提取

JsonCssExtractionStrategy是Crawl4AI的一项强大功能,允许用户使用CSS选择器从网页中提取结构化数据。这种方法特别适用于需要从一致的HTML结构中提取特定数据点的情况,例如表格或重复的元素。重复元素的基础CSS选择器从每个元素中提取的字段,每个字段都有自己的CSS选择器这种策略的执行速度快且高效,因为它不依赖于外部服务(如大语言模型)进行数据提取。

2025-05-16 07:57:12 227

原创 大模型——用Qwen3+MCPs实现AI自动发布小红书笔记!支持图文和视频

在Cherry Studio MCP服务器里配置文生图MCP-server,魔搭上目前有几个支持生图的MCP,比如ModelScope-Image-Generation-MCP和MiniMax-MCP,两者都在魔搭的云端资源上部署,可以支持SSE的方式调用。你只要在Cherry Studio的MCP服务器页面,填入 ModelScope的 API令牌把服务器一键同步过来,就可以在Cherry Studio上使用所有魔搭已经托管的MCP服务了,非常的方便。最重要的是,这些服务完全不需要手动一个个的配置!

2025-05-16 07:55:57 252

原创 大模型——Crawl4AI为 LLM 和 RAG 准备高质量网页数据

传统网络爬虫框架功能多样,但在处理数据时常需要额外进行清洗与格式化,这使得它们与大语言模型(LLM)的集成相对复杂。许多工具的输出(如原始HTML或未结构化的JSON)包含大量噪声,不适合直接用于检索增强生成(RAG)等场景,因为这会降低LLM处理的效率和准确性。Crawl4AI 提供了一种不同的解决方案。它专注于直接生成干净、结构化的Markdown格式内容。这种格式保留了原文的语义结构(如标题、列表、代码块),同时智能地去除了导航、广告、页脚等无关元素,非常适合作为LLM的输入或用于构建高质量的。

2025-05-13 21:27:15 206

原创 大模型—— FastGPT 知识库无缝集成到 n8n 工作流 (基于 MCP 协议)

在讨论这类低代码/无代码自动化工具时,一个常见的问题是:为什么不直接用代码实现?对于熟悉编程的开发者来说,用代码似乎更直接、更可控。确实,n8n 这类工具存在一定的学习曲线,初期上手可能需要投入一些时间。然而,一旦熟练掌握,其构建和迭代工作流的效率往往远超传统代码开发,特别是在涉及集成多个 API 和服务的场景下。n8n 强大的节点生态和社区支持能够满足从简单到复杂的各种自动化需求,让想法快速落地。当然,对于需要高度定制、极致性能或涉及复杂底层逻辑的企业级项目,纯代码开发仍然是必要的。

2025-05-13 21:23:57 476

原创 大模型——MiMo:高效数学推理与代码生成的小型开源模型

MiMo 是小米公司开发的一个开源大语言模型项目,专注于数学推理和代码生成。核心产品是 MiMo-7B 系列模型,包含基础模型 (Base)、监督微调模型 (SFT)、从基础模型训练的强化学习模型 (RL-Zero) 和从 SFT 模型训练的强化学习模型 (RL)。这些 70 亿参数模型通过优化预训练数据、多重令牌预测 (MTP) 和强化学习,展现出媲美更大模型的推理能力。MiMo-7B-RL 在数学和代码任务中性能突出,可匹敌 OpenAI o1-mini。模型支持vLLM。

2025-05-09 07:56:30 220

原创 大模型——Step1X-Edit:自然语言指令编辑图像的开源工具

Step1X-Edit 是一个开源图像编辑框架,由 Stepfun AI 团队开发,托管于 GitHub。它结合多模态大语言模型(Qwen-VL)和扩散变换器(DiT),让用户通过简单的自然语言指令编辑图像,例如更改背景、移除物体或转换风格。项目于 2025 年 4 月 25 日发布,性能接近闭源模型如 GPT-4o 和2 Flash。Step1X-Edit 提供模型权重、推理代码和 GEdit-Bench 基准测试,支持广泛的编辑场景。

2025-05-09 07:53:40 224

原创 大模型——Trae IDE 指南:轻松配置自定义 AI 规则 (Trae Rules)

Trae Rules 是一项强大的功能,它允许开发团队或个人开发者自定义并强制 AI 在代码生成、解释或修改时遵循特定的代码风格和最佳实践。设想一个常见情景:开发者在使用 AI 进行编程辅助时,可能需要反复向 AI强调相同的指令,例如代码的语言风格、项目必须遵循的框架约束、注释的详细程度与格式,或是需要遵守的安全合规条例等。Trae Rules 功能通过为 AI 预先设定这些行为规范,使得 AI 在每次响应时都能自动“读取”并遵循这些预设规则。

2025-05-09 07:50:09 472

原创 大模型——Trae实战创建一个MCP Server

从个人体验下来的感觉,对比 Deepseek v3 和 r1 的模型,Builder with MCP这里的执行,选择 Doubao-1.5-pro 效果更好,豆包对关联的 MCP Server 和对应的 Tools 的理解和使用更准确,而 Deepseek 有编码偏向性而忽略去使用可用的 MCP Server。,且 Agent with MCP 的设计,可以同时创建多个场景下的 Agent,并关联不同 MCP Server,免去了其他 MCP Client 需要根据任务不时的去增删服务的繁琐操作。

2025-05-07 07:59:58 748

原创 大模型——GraphRAG基于知识图谱+大模型技术构建的AI知识库系统

AI知识库系统是一款基于大语言模型和RAG技术的知识库管理系统,适用于智能客服、企业内部知识库、学术研究与教育等场景。它支持文档直传、自动文本拆分与向量化,结合RAG减少模型“幻觉”,提供精准智能问答。系统支持多类别语料的高效收集、分类、存储与检索,采用知识图谱优化数据组织和检索精度,通过模块化、层次化图结构设计解决数据管理挑战,确保智能、灵活的知识管理和问答体验。问答对话、智能体管理、知识库、资源预览、资源编目、图像识别、OCR识别、智能分段、网页爬虫、知识图谱、本体构建、社区摘要、模型服务管理等。

2025-05-06 18:36:03 322

原创 大模型——Cherry Studio配置MCP服务全流程解析:让AI自动调用工具处理任务

最近 AI 领域真是隔几天就有一个新热度,随着越来越多的使用 MCP 制作的 Agent 产品出现,MCP 这个新名词也频繁刷屏,有着大火的趋势,那么什么是 MCP 呢?MCP 是一种接口协议,由 AI 大模型公司 Anthropic 在 2024 年 11 月推出,它的全称是 Model Context Protocol,即模型上下文协议!它是连接 API 和大模型的桥梁,通过 MCP,我们可以让 AI 模型能够用一种通用的语言和各种不同的工具与服务进行交流,比如浏览器,Excel 表格,网页截图等等。

2025-05-06 13:20:28 108

原创 SQL面试题——留存分析之使用bitmap 计算留存

因为使用工具的限制,所以我们实现方式也会有所不同,之前我们的实现方式比较通用,几乎所有的数据库软件都支持,今天我们看一下如何使用bitmap 来实现,首先这就需要你的数据库支持bitmap,这里我是用的是StarRocks,其实现在很多都支持了。其实这里看起来和我们常规的统计差不多,但是你要注意到visit_users 是个bitmap,也就是我们在没有改变统计方式的前提下,就实现了使用bitmap,其实这里我们也可以使用 bitmap_count函数。统计每个页面的 UV。

2025-05-02 11:25:37 194

原创 大模型——模型上下文提供者(MCP)如何赋能AI智能体

模型上下文提供者(MCP)作为AI系统中的智能调度层,通过动态选择与用户请求相关的工具,显著提高了AI助手的效率和准确性。它不仅减少了提示词大小,还提高了模型响应速度和决策质量。随着AI工具生态系统的不断扩大,MCP的重要性将越来越突出,成为构建高效AI系统的关键组件。

2025-05-02 10:22:03 562

原创 大模型——开源笔记软件终极对比:隐私、协作、知识管理,一篇文章搞定

开源笔记软件的核心价值在于数据主权与可定制性,但也需权衡功能成熟度与技术门槛。建议读者根据实际需求选择 2-3 款工具试用,再结合自身需求选择一款合适的工具。隐私安全Joplin和适合跨平台加密场景,前者灵活同步,后者极简设计。Turtl仅推荐离线存储高度敏感信息。知识管理Logseq和Trilium适合构建知识网络,前者学术研究,后者技术用户。思源笔记中文友好,但需权衡付费同步与性能问题。团队协作Focalboard和AppFlowy适合轻量级团队管理,前者看板协作,后者数据库管理。

2025-05-02 10:12:15 144

原创 大模型——使用 StarRocks 作为向量数据库

通过上述步骤,用户可以成功将 StarRocks 用作向量数据库,加载文档,进行标记化,以及构建一个可以进行提问的系统。这样的设置不仅提高了数据处理的效率,还能够实现快速的检索和分析功能。

2025-04-30 08:23:54 410

原创 大模型——使用coze搭建基于DeepSeek大模型的智能体实现智能客服问答

扣子(coze)是新一代 AI 应用开发平台。无论你是否有编程基础,都可以在扣子上快速搭建基于大模型的各类 AI 应用,并将 AI 应用发布到各个社交平台、通讯软件,也可以通过 API 或 SDK 将 AI 应用集成到你的业务系统中。借助扣子提供的可视化设计与编排工具,你可以通过零代码或低代码的方式,快速搭建出基于大模型的各类 AI 项目,满足个性化需求、实现商业价值。点击下方+添加节点,添加一个大模型节点,进行如下连接。单击大模型节点,在右侧可以设置该节点相关信息,首先改名成总结大模型。

2025-04-29 21:13:16 439

原创 大模型——在本地计算机上利用AnythingLLM构建DeepSeek大模型本地知识库

访问官网下载Ollama安装包,或者可以访问百度网盘地址:https://pan.baidu.com/s/1kOcyzb3QGMnJOoIVXka4NA?pwd=ziyu ,提取码是ziyu,找到安装包,双击安装包安装界面如下图所示:下载完成后双击打开安装程序,点击Install即可一键安装,安装完成后程序会自动退出。

2025-04-29 08:20:28 54

原创 大模型——Spring.new快速构建AI驱动的定制化商业应用

Spring.new 是一个基于人工智能的在线平台,专注于帮助营销经理和产品经理快速构建定制化工作流和小型应用。它通过自然语言输入,让用户描述需求,自动生成连接 Notion、Airtable、Slack 等工具的工作流或应用,例如将 Figma 设计转为可交互界面,或创建轻量级 CRM 系统。平台无需用户具备编程经验,操作简单,适合快速迭代的团队。Spring.new 强调即时性,号称从需求到成品只需几分钟,特别适合需要快速上线营销活动或产品功能的用户。

2025-04-27 21:02:31 134

原创 大模型——Suna集成浏览器操作与数据分析的智能代理

Suna 是 Kortix AI 开发的一个开源通用 AI 代理,托管在 GitHub 上,基于 Apache 2.0 许可证,允许用户免费下载、修改和自托管。它通过自然语言对话帮助用户完成复杂任务,如网页浏览、文件管理、数据抓取和网站部署。Suna 采用模块化架构,包括 Python/FastAPI 后端、Next.js/React 前端、Supabase 数据库和 Daytona 沙盒,确保安全性和灵活性。它支持与 OpenAI、Anthropic 等大语言模型集成,并通过。

2025-04-27 21:00:30 442

原创 大模型——什么是 Vibe Coding?从零开始学习 AI 辅助编程

生成式 人工智能 的指数级增长正不断重塑各个行业,软件开发领域也不例外。大约在 2025 年初,一股源自美国硅谷的新思潮开始引起关注:开发者似乎可以借助 AI 工具,在几乎不直接编写代码的情况下构建产品。这种依赖直觉、跳脱传统编码苦役的开发方式,被赋予了一个颇具时代感的名字——。简单来说, Vibe Coding 代表了一种新颖的软件开发哲学。开发者主要通过自然语言向 AI 描述需求,由 AI 负责生成和修改代码。

2025-04-25 08:18:09 131

原创 大模型——快速部署和使用 Deep Research Web UI

Deep Research Web UI是一款由 AI 驱动的智能研究可视化工具。它整合了搜索引擎、网络抓取和大语言模型等先进技术,能够自动对复杂问题进行深度挖掘,并生成结构完整的研究报告。该工具强调用户的数据安全和部署灵活性,所有数据处理均在本地浏览器完成,并支持私有化部署。用户可以通过动态树状结构实时追踪研究的逻辑脉络,最终报告支持一键导出为 PDF 或 Markdown 格式,方便分享和存档。

2025-04-25 08:16:46 214

原创 大模型——多种RAG组合优化(langchain实现)

列表中的每个元素代表一条消息,消息通常由 BaseMessagePromptTemplate 类的实例组成,比如 SystemMessagePromptTemplate、HumanMessagePromptTemplate 等,分别对应系统消息、人类消息等不同角色的消息模板。例如,如果您希望与ChatGPT在与体育相关的话题范围内进行对话,可以将”system"角色分配给聊天助手,并设置内容为"体育专家”。CoT的优势在复杂的推理任务中更为明显,同时使用大型模型(例如,参数超过50B)。

2025-04-24 20:32:53 682

原创 大模型——RAG进阶 Embedding Models嵌入式模型原理和选择

主要用于训练和评估模型:根据一段文章回答相关的问题。**BGE-M3:**北京智源研究院开发,支持多语言、混合检索(稠密+稀疏向量),处理 8K 上下文,适合企业级知识库。**NV-Embed-v2:**基于 Mistral-7B,检索精度高(MTEB 得分 62.65),但需较高计算资源。**训练方法:**对比学习(如 Word2Vec 的 Skip-gram/CBOW)、预训练+微调(如 BERT)。**上下文依赖:**现代模型(如 BGE-M3)动态调整向量,捕捉多义词在不同语境中的含义。

2025-04-24 08:18:46 449

原创 大模型——Dify使用MCP查询数据库

今天我们来看Dify结合MCP查询数据库,这里我们用到了一个查询数据库的服务,其实之前我们也有一篇讲text2sql的案例,但是因为我们表结构作为知识库,需要我们把这个表结构做的很丰富,确保能够更精准的生成相应的SQL语句,今天介绍的MCP查询数据库会更灵活一些。MCP服务其实在现阶段,Dify的支持还是欠缺了点,使用的感受还是不如其他的一些客户端,比如我用的cherry studio,这个给我感觉会更兼容一些,使用起来会更方便一些,就是cursor也很好用,有空我也会去介绍一下这些工具的使用。

2025-04-23 08:12:07 1504

原创 大模型——InternVL开源多模态大模型,支持图像、视频和文本处理

InternVL 是由上海人工智能实验室(OpenGVLab)开发的一个开源多模态大模型项目,托管在 GitHub 上。它集成了视觉和语言处理能力,支持图像、视频和文本的综合理解与生成。InternVL 的目标是打造一个媲美商业模型(如 GPT-4o)的开源替代品,广泛应用于视觉感知、跨模态检索和多模态对话等任务。该项目以其强大的视觉编码器、动态高分辨率支持和高效训练策略著称,模型规模从 1B 到 78B 参数不等,适合从边缘设备到高性能服务器的多种应用场景。

2025-04-23 08:01:57 93

原创 大模型——Crawl4AI中的分块策略详解

通过以上的分块策略,用户可以根据特定需求选择最佳的方法来划分文本。无论是需要精确的句子边界、主题基础的分段,还是均匀的块大小,Crawl4AI都能满足用户的需求。在Crawl4AI中,文本处理时会使用多种分块策略,将文本划分为可管理的小部分。在这个示例中,使用了正则表达式来定义分割文本的模式,文本将根据指定的模式被分成多个块。在这个示例中,使用滑动窗口方法生成重叠的文本块,有助于在处理时保留上下文信息。使用滑动窗口方法创建重叠的块。在这个示例中,文本被分割成每个块包含10个单词,便于均匀处理文本。

2025-04-21 07:27:12 132

原创 大模型——Crawl4AI JavaScript 执行与数据过滤使用 AsyncWebCrawler

在更复杂的场景中,可能需要在多个请求之间保持状态,或在初始页面加载后执行额外的 JavaScript。",print("初始爬虫结果:", result1.extracted_content)print("额外的 JS 执行结果:", result2.html)在这个高级示例中,首先执行初始爬取,并为会话指定一个 ID。接着,在同一会话中执行额外的 JavaScript,滚动页面到底部,等待条件确保页面加载完全。

2025-04-21 07:26:28 353

原创 大模型——阿里云百炼 MCP 服务评测与 Agent 构建实战

第二个案例相对复杂一些,目标是让 AI 自动抓取指定网页内容,进行总结,并将总结结果连同标签一起保存到Flomo笔记应用中。此案例涉及两个第三方MCPFirecrawl(用于网页抓取)和Flomo(用于笔记记录)。

2025-04-20 09:46:30 255

原创 AI 编程工具——使用cursor创建一个mcp服务,并在cursor中调用

Cursor 是一个 AI 驱动的代码编辑器,支持(MCP),允许开发者通过自定义服务器增强 AI 功能。MCP 是一种开放标准,连接 AI 模型与外部工具或数据源。本报告聚焦于配置一个简单的天气服务器,使用假数据,适合初学者。

2025-04-20 08:54:43 343

原创 AI 编程工具—如何在 Cursor 中集成使用 MCP工具

选择对应的服务后,可以在这里拿到设置好的cursor 中对应的配置,新版的cursor已经没有界面配置入口,官方推荐使用json 格式配置,方便配置环境变量。找到你想要的mcp server 后,点击cursor ,这是因为我们在cursor中演示,也就是我们的mcp client 是cursor。这个表示有问题,其实我们删除上面的配置文件,因为我们其实在执行完npm 命令后,这个mcp server 已经配置好了,这是我后来发现的。下面我们就可以点击json 复制下面的mcp server 的配置了。

2025-04-18 22:34:40 450

数据仓库理论与实战(适用于从事数仓方向的小伙伴)

数据仓库理论与实战(适用于从事数仓方向的小伙伴)

2022-02-15

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除