数仓建模—总线矩阵

总线矩阵是数据仓库和数据集市建模中的关键概念,它确保了维度的一致性和事实的统一解释。矩阵列出一致性维度与不同业务过程的关系,作为企业数据架构的总体蓝图。设计总线矩阵有助于避免数据质量问题和数据孤岛,促进扩展和整体数据仓库建设。通过总线矩阵,我们可以清晰理解每个业务过程涉及的通用维度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总线矩阵

维度建模的数据仓库中,有一个概念叫Bus Architecture,一般翻译为“总线架构”,后来很多人称之为总线矩阵,后面我们在解释这是为什么,总线架构是Kimball的多维体系结构(MD)中的三个关键性概念之一,另两个是一致性维度(Conformed Dimension)和一致性事实(Conformed Fact)。

在建立数据仓库和数据集市之前,,架构师首先要做的就是设计出在整个企业内具有统一解释的标准化的维度和事实,即一致性维度和一致性事实。而开发团队必须严格的按照这个体系结构来进行数据集市的迭代开发。

数据总线矩阵

实际设计过程中,我们通常把总线架构列表成矩阵的形式,其中列为一致性维度,行为不同的业务处理过程,即事实,在交叉点上打上标记表示该业务处理过程与该维度相关,这个矩阵也称为总线矩阵(Bus Matrix)。

总线矩阵是DW/BI系统的一个总体数据架构,行是业务过程(事实),列是公共维度(一致性维度),图表中的X表示的是哪些列与哪些行有关系,也表示这一个业务过程需要有哪些公共维度。

总线矩阵同时也提供一种分解企业DW/BI规划任务的合理方式,发团队可以独立的,异步的完成矩阵的各个业务过程,迭代地去建立一个集成的企业数据仓库。

下面是kimball在数据工具书中的一个图

image-20211025154745766

总线架构和一致性维度、一致性事实共同

### 数据仓库建模五要素的详细解释 数据仓库建模是构建高效、可扩展的数据仓库系统的核心环节。以下是数据仓库建模的五个关键要素及其详细解释: #### 1. **业务过程** 业务过程是指企业中与操作型活动相关的具体任务或流程,例如订单处理、付款、退货等[^4]。在数据仓库建模中,业务过程的选择至关重要,因为它直接定义了设计目标以及事实表的粒度、维度和事实。每个业务过程对应于企业数据仓库总线矩阵的一行,从而确保据模型能够准确反映企业的实际业务需求。 #### 2. **维度** 维度是描述业务过程的背景信息,通常包括时间、地点、产品、客户等属性[^4]。维度为用户提供了一个多角度分析据的框架,使得据可以按照不同的层次进行切片和切块。例如,通过时间维度,用户可以按天、月、季度等粒度查看销售据;通过地理维度,可以分析不同地区的业务表现。 #### 3. **事实** 事实是与业务过程相关的关键指标或度量值,通常以值形式表示,例如销售额、利润、订单量等。事实表存储了与特定业务过程相关的量化据,并结合维度表提供丰富的分析能力。事实表的设计需要明确其粒度,即据的最低层次单位。 #### 4. **粒度** 粒度定义了事实表中据的详细程度或汇总级别[^4]。例如,对于销售据,粒度可以是“每笔交易”或“每天的汇总”。选择合适的粒度对于平衡据存储需求和查询性能至关重要。过细的粒度可能导致据量过大,而过粗的粒度可能无法满足用户的分析需求。 #### 5. **据集成与标准化** 数据仓库中的据通常来源于多个异构的业务系统,因此据集成与标准化是建模过程中不可忽视的一环[^3]。为了确保据的一致性和准确性,需要对原始据进行清洗、转换和加载(ETL),并统一据格式和标准。例如,在Operation Data Store层中,即使目的是存储原始据,也需要对来自不同业务系统的据进行一定的处理和融合[^3]。 ```python # 示例:ETL过程中的据标准化 def standardize_data(raw_data): # 统一日期格式 raw_data['date'] = pd.to_datetime(raw_data['date'], format='%Y-%m-%d') # 统一货币单位 raw_data['amount'] = raw_data['amount'].apply(lambda x: float(x.replace('$', ''))) return raw_data ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不二人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值