大模型实战—Llama3-8B 中文微调

本教程详细介绍了如何使用LLaMA-Factory对Llama3-8B-Instruct模型进行中文微调。通过魔搭社区或Huggingface下载模型,克隆LLaMA-Factory项目,创建虚拟环境,安装依赖,并进行模型训练,最终导出微调后的模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Llama3-8B+ LLaMA-Factory 中文微调

Llama3是目前开源大模型中最优秀的模型之一,但是原生的Llama3模型训练的中文语料占比非常低,因此在中文的表现方便略微欠佳!

本教程就以Llama3-8B-Instruct开源模型为模型基座,通过开源程序LLaMA-Factory来进行中文的微调,提高Llama3的中文能力!LLaMA-Factory是一个开源的模型训练工具

Llama3-8B-Instruct模型下载地址:

魔搭社区(境内):https://modelscope.cn/models/LLM-Research/Meta-Llama-3-8B-Instruct/files

huggingface(境外):https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/tree/main

LL

### Ollama大模型微调实战教程 #### 工具准备 对于Ollama命令工具的操作,可以使用`ollama list`查看当前已有的模型列表;通过`ollama pull Llama-3-8B`增量更新所需的大规模预训练模型至本地环境;如果想要移除某个不再使用的模型,则可通过执行`ollama rm Llama-3-8B`完成删除动作;另外还支持复制现有模型创建新版本的功能,比如`ollama cp Llama-3-8B Llama-newModel`用于快速迭代实验不同配置下的效果[^3]。 #### 数据集构建 为了更好地适配特定应用场景,在开始调整之前应当先准备好高质量的数据集。这通常意味着收集并清理一批能够代表目标领域特征的文本样本,并将其转换成适合输入给定框架的形式。例如当采用LangChain作为开发平台时,可能还需要考虑如何借助MongoDB矢量搜索引擎优化数据存储结构以便于后续高效查询与处理[^2]。 #### 调整策略制定 针对具体的业务需求设计合理的参数调节方案至关重要。一方面要关注学习率、批次大小等超参的选择,另一方面也要重视损失函数的设计以及正则化手段的应用。此外,考虑到资源消耗问题,建议优先尝试迁移学习路径——即基于已有较好泛化的基底网络进行局部精细化校准而非完全重新训练整个体系架构[^1]。 #### Python代码实例 下面给出一段简单的Python脚本示范怎样加载预训练权重并对指定任务实施二次训练: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # 加载tokenizer和model tokenizer = AutoTokenizer.from_pretrained("path_to_your_model") model = AutoModelForCausalLM.from_pretrained("path_to_your_model") device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def fine_tune(model_path, dataset): optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) for epoch in range(epochs): # 设定循环次数 model.train() for batch in dataset: inputs = tokenizer(batch['text'], return_tensors="pt", truncation=True, padding=True).to(device) outputs = model(**inputs, labels=inputs["input_ids"]) loss = outputs.loss optimizer.zero_grad() loss.backward() optimizer.step() fine_tune('your_saved_model', your_dataset) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不二人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值