大模型——大模型微调改善SQL生成
在使用LLM 执行 SQL 生成任务时,通常难以生成准确的 SQL 查询,为此使用 QLoRA 在自定义数据集上微调大模型是一种有效的方法。
在使用Mistral 7B LLM 执行 SQL 生成任务时,我遇到了挑战,尤其是在处理公司的数据库时。这些模型通常难以生成准确的 SQL 查询,即使在上下文中提供了数据库架构和表关系。为了应对这一挑战,使用 QLoRA 在针对特定数据库架构定制的自定义数据集上微调 7B 模型是一种有效的方法。
在本文中,我将引导你完成微调 7B 模型以更有效地处理 SQL 生成任务的过程,以及如何将微调后的模型集成到基于 LangChain 的应用程序中以实现实时数据库交互。
1、概述
在深入研究细节之前,让我们概述一下我们将在本指南中遵循的关键步骤:
- 根据数据库架构准备自定义数据集。
- 使用 QLoRA 技术微调 7B 模型。
- 评估微调模型的性能。
- 将模型集成到 LangChain 应用程序中以进行基于 SQL 的数据库交互。