大模型——大模型微调改善SQL生成

大模型——大模型微调改善SQL生成

在使用LLM 执行 SQL 生成任务时,通常难以生成准确的 SQL 查询,为此使用 QLoRA 在自定义数据集上微调大模型是一种有效的方法。

大模型微调改善SQL生成

在使用Mistral 7B LLM 执行 SQL 生成任务时,我遇到了挑战,尤其是在处理公司的数据库时。这些模型通常难以生成准确的 SQL 查询,即使在上下文中提供了数据库架构和表关系。为了应对这一挑战,使用 QLoRA 在针对特定数据库架构定制的自定义数据集上微调 7B 模型是一种有效的方法。

在本文中,我将引导你完成微调 7B 模型以更有效地处理 SQL 生成任务的过程,以及如何将微调后的模型集成到基于 LangChain 的应用程序中以实现实时数据库交互。

1、概述

img

在深入研究细节之前,让我们概述一下我们将在本指南中遵循的关键步骤:

  • 根据数据库架构准备自定义数据集。
  • 使用 QLoRA 技术微调 7B 模型。
  • 评估微调模型的性能。
  • 将模型集成到 LangChain 应用程序中以进行基于 SQL 的数据库交互。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不二人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值