大模型——RAG应用如何进行有效的文本切分

大模型——RAG应用如何进行有效的文本切分

在RAG(检索增强生成,Retrieval-Augmented Generation)应用中,文本分块(Text Chunking)是连接“知识存储”与“检索-生成”的核心预处理步骤,其重要性体现在对检索效率、相关性、生成质量及系统灵活性的多维度影响。

img

首先松哥和大家讨论第一个问题,就是为什么我们要重视文本切分。

一 为什么文本切分很重要

1.1 提升检索相关性:精准匹配用户需求

RAG 的核心是“先检索、后生成”,而检索的本质是从知识库中找到与用户查询语义最相关的信息。文本分块直接影响检索的精准度:

  • 若文本未分块(或块过大),单个块可能包含多个无关主题。例如,一篇同时讨论“人工智能伦理”和“机器学习算法”的文章,若作为一个整块存储,当用户查询“人工智能伦理”时,检索结果会包含大量“算法”的冗余信息,干扰相关性判断。
  • 合理分块(如按段落、主题或逻辑单元分割)可使每个块聚焦单一语义。例如,将上述文章拆分为“伦理争议”“算法原理”两个块,用户查询时能精准匹配目标块,减少无关信息干扰。

1.2 优

### 构建基于RAG的医学问答系统 #### 模型选择 为了构建高效可靠的医学问答系统,可以选择已经经过大规模预训练的语言模型作为基础框架。这些模型具备强大的自然语言理解能力,在此基础上引入检索增强机制(Retrieval-Augmented Generation),使得系统能够更精准地获取并利用外部知识库中的信息[^1]。 对于医学领域而言,建议采用专门针对医疗场景优化过的BERT变体或其他相似结构的大规模预训练模型作为编码器部分;而对于解码端,则可以根据实际需求选用适合对话生成任务的Transformer架构。此外,考虑到医学专业知识的独特性和复杂度,也可以探索使用多模态融合的方式,比如结合iRAG技术,以便更好地处理包含图表、影像资料等内容的问题情境[^2]。 #### 数据集准备 高质量的数据源是确保系统性能的关键所在。为此,需收集整理来自权威渠道发布的临床指南、教科书摘要以及公开可用的真实病例记录等文本材料,并将其转化为适配于所选模型输入格式的知识片段。同时,还应建立配套的问题-答案对集合用于监督学习过程中的微调操作[^3]。 具体来说,可以按照如下原则来进行数据加工: - **清洗过滤**:去除无关噪声项,保留核心诊疗信息; - **标注分类**:依据疾病种类或症状表现给定标签,便于后续索引定位; - **切分重组**:遵循一定逻辑关系将长篇文档拆分成若干短句段落形式,既满足嵌入向量长度约束又兼顾语义连贯性[^5]。 #### 训练流程 整个训练分为两个主要阶段——预训练与精调: - 预训练期间,先让模型接触大量未标记的一般性健康咨询类交流样本,以此积累广泛背景常识; - 进入到细粒度调整环节后,则重点聚焦于特定主题范围内的互动模式识别,即借助前述精心编排好的Q&A实例指导参数更新迭代方向,直至收敛至理想状态为止。在此基础上实施beam search策略以提高最终响应质量[^4]。 值得注意的是,鉴于医学信息安全的重要性,在线部署前还需严格执行隐私保护措施,防止敏感个人信息泄露风险。 #### 应用场景 此类系统适用于多种场合下的辅助决策支持工作,例如在线问诊平台上的即时答疑服务、医院内部信息系统集成模块或是科研人员开展循证研究时的信息检索工具等等。通过提供快速准确的回答反馈,不仅有助于缓解一线医护人员的工作压力,同时也促进了优质医疗服务资源的有效分配。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不二人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值