数据处理和分析之数据预处理:异常值处理(Outlier Detection):Z-Score方法检测异常值

数据处理和分析之数据预处理:异常值处理(Outlier Detection):Z-Score方法检测异常值

在这里插入图片描述

数据处理和分析之数据预处理:异常值处理 (Outlier Detection):Z-Score方法检测异常值

理解异常值和Z-Score

异常值的基本概念

异常值(Outliers)是指在数据集中显著偏离其他观察值的数值。这些数值可能由于测量错误、数据录入错误或实际的异常情况而产生。在数据分析中,异常值的检测和处理是预处理阶段的重要步骤,因为它们可能对模型的训练和预测结果产生重大影响。

Z-Score方法的原理

Z-Score(标准分数)是一种统计学上的方法,用于衡量一个数值相对于其所属数据集的平均值的偏离程度,以标准差为单位。Z-Score的计算公式如下:

Z=(X−μ)σ Z = \fr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值