数据处理和分析之数据聚类:均值漂移(MeanShift):核密度估计与带宽选择
数据处理和分析之数据聚类:均值漂移 (Mean Shift):核密度估计与带宽选择
引言
均值漂移算法简介
均值漂移(Mean Shift)是一种基于密度的聚类算法,它通过迭代地将数据点移动到其局部密度的最高点来寻找数据的模式。均值漂移算法不需要预先设定聚类的数量,这使得它在处理未知数据结构时非常灵活。算法的核心在于使用核密度估计来确定数据点的密度,并通过均值漂移向量来更新数据点的位置,最终达到收敛于模式点的目的。
核密度估计基础
核密度估计(Kernel Density Estimation, KDE)是一种非参数估计方法,用于估计未知的密度函数。在均值漂移算法中,KDE用于计算数据点的局部密度。核函数(Kernel Function)的选择和带宽(Bandwidth)的设定对KDE的性能有重要影响。核函数通常是一个平滑函数,如高斯核,它将每个数据点的贡献限制在其邻域内。带宽决定了邻域的大小,从而影响密度估计的平滑程度。
均值漂移算法原理
均值