基于最小二乘法的线性度校准
原理
线性度校准是传感器校准过程中的一项重要步骤,旨在确保传感器的输出与输入之间保持线性关系。在实际应用中,由于制造工艺、环境条件等因素的影响,传感器的输出往往存在非线性误差。这些误差会严重影响传感器的精度和可靠性。最小二乘法(Least Squares Method,LSM)是一种常用的数学方法,用于拟合数据点,从而找到最佳的线性关系。通过最小化误差平方和,最小二乘法可以提供一种有效的方法来校准传感器的线性度。
最小二乘法的基本概念
最小二乘法是一种用于解决过定方程组(方程数多于未知数)的方法。其基本思想是通过最小化观测值与拟合值之间的误差平方和,找到最佳的拟合参数。在传感器线性度校准中,我们通常假设传感器的输出 yyy 与输入 xx<