传感器融合与多模态信息处理
在导航与定位系统中,单个传感器提供的信息往往存在局限性和不确定性。传感器融合技术通过结合多种传感器的数据,能够提高系统的可靠性和准确性。本节将详细介绍传感器融合的基本原理,多模态信息处理的方法,以及如何在基于特征的导航系统中应用这些技术。
1. 传感器融合的基本原理
传感器融合是指将多个传感器的数据综合起来,以获得比单个传感器更准确、更可靠的信息。传感器融合可以分为以下几个层次:
-
数据级融合:在原始数据层面进行融合,例如将多个摄像头的图像数据进行拼接。
-
特征级融合:在特征提取后的数据层面进行融合,例如将不同传感器提取的特征进行综合。
-
决策级融合:在最终决策层面进行融合,例如将不同传感器的定位结果进行加权平均。
1.1 数据级融合
数据级融合是最底层的融合方式,通过直接处理传感器的原始数据来提高信息的准确性和完整性。例如,多摄像头系统中的图像拼接可以提高环境感知的覆盖范围。