精密装配机器人系列编程:KUKA KR 3 AGILUS_(12).精密装配中的误差分析与补偿

精密装配中的误差分析与补偿

在精密装配中,机器人精度的高低直接决定了装配质量的优劣。误差分析与补偿是提高机器人装配精度的关键技术之一。本节将详细介绍如何进行误差分析,以及如何通过软件和硬件手段进行误差补偿,从而确保机器人在精密装配中的高精度和高可靠性。

在这里插入图片描述

误差分析的基本概念

误差分析是指通过测量和计算,确定机器人在执行精密装配任务时产生的各种误差,并对其进行量化和分类。这些误差可以分为系统误差和随机误差两大类:

  • 系统误差:这类误差是由机器人的结构、设计和控制系统等固有因素引起的,具有一定的规律性。常见的系统误差包括机械结构误差、传感器误差、控制系统误差等。

  • 随机误差:这类误差是由于环境因素、操作条件等不可控因素引起的,不具有确定的规律性。常见的随机误差包括温度变化、振动、摩擦等。

误差来源

  1. 机械结构误差:包括关节间隙、轴偏移、刚度不足等。

  2. 传感器误差:包括位置传感器、力传感器、视觉传感器等的精度误差。

  3. 控制系统误差:包括运动控制算法的误差、指令执行的时延等。

  4. 环境因素:包括温度变化、振动、电磁干扰等。

误差测量方法

  1. 激光跟踪仪:用于测量机器人末端执行器的位置误差。

  2. 三坐标测量机(CMM):用于测量机器人在不同位置的重复性误差。

  3. 视觉传感器:用于测量机器人装配过程中的相对位置误差。

  4. 力传感器:用于测量机器人在装配过程中施加的力误差。

误差补偿技术

误差补偿技术是指通过软件和硬件手段,对机器人产生的误差进行修正,从而提高其装配精度。常见的误差补偿技术包括几何误差补偿、温度补偿、动态误差补偿等。

几何误差补偿

几何误差补偿主要是针对机器人的机械结构误差进行修正。通过建立机器人几何模型,利用测量数据对模型参数进行标定,从而修正机器人的运动轨迹。

例子:几何误差补偿

假设我们使用KUKA KR 3 AGILUS机器人进行精密装配,需要对机械结构误差进行补偿。以下是一个简单的Python代码示例,使用KUKA机器人控制器的API进行几何误差补偿:


# 导入必要的库

import kuka_robotics_api as kuka



# 初始化机器人控制器

robot = kuka.RobotController('192.168.1.100')



# 定义几何误差补偿参数

compensation_params = {

    'joint1_offset': 0.005,  # 第一关节偏移补偿

    'joint2_offset': -0.003, # 第二关节偏移补偿

    'joint3_offset': 0.002,  # 第三关节偏移补偿

    'joint4_offset': -0.001, # 第四关节偏移补偿

    'joint5_offset': 0.001,  # 第五关节偏移补偿

    'joint6_offset': 0.002   # 第六关节偏移补偿

}



# 定义补偿函数

def apply_geometric_compensation(joint_angles, compensation_params):

    """

    对机器人关节角度进行几何误差补偿



    :param joint_angles: 机器人当前的关节角度

    :param compensation_params: 几何误差补偿参数

    :return: 补偿后的关节角度

    """

    compensated_angles = []

    for i in range(6):

        compensated_angle = joint_angles[i] + compensation_params[f'joint{i+1}_offset']

        compensated_angles.append(compensated_angle)

    return compensated_angles



# 获取当前关节角度

current_angles = robot.get_joint_angles()



# 应用几何误差补偿

compensated_angles = apply_geometric_compensation(current_angles, compensation_params)



# 发送补偿后的关节角度到机器人

robot.set_joint_angles(compensated_angles)



# 关闭机器人控制器

robot.disconnect()

温度补偿

温度补偿主要是针对环境温度变化引起的机器人误差进行修正。通过温度传感器监测环境温度,并根据温度变化调整机器人的参数,从而减少温度对精度的影响。

例子:温度补偿

假设我们使用KUKA KR 3 AGILUS机器人进行精密装配,需要对温度变化引起的误差进行补偿。以下是一个简单的Python代码示例,使用温度传感器数据进行温度补偿:


# 导入必要的库

import kuka_robotics_api as kuka

import temperature_sensor as temp



# 初始化机器人控制器

robot = kuka.RobotController('192.168.1.100')



# 初始化温度传感器

temperature_sensor = temp.TemperatureSensor('192.168.1.101')



# 获取当前环境温度

current_temperature = temperature_sensor.get_temperature()



# 定义温度补偿参数

temperature_compensation_params = {

    'base_temp': 25,  # 基准温度

    'temp_coeff': 0.001  # 温度系数

}



# 定义温度补偿函数

def apply_temperature_compensation(joint_angles, current_temperature, temperature_compensation_params):

    """

    对机器人关节角度进行温度补偿



    :param joint_angles: 机器人当前的关节角度

    :param current_temperature: 当前环境温度

    :param temperature_compensation_params: 温度补偿参数

    :return: 补偿后的关节角度

    """

    compensated_angles = []

    for angle in joint_angles:

        compensated_angle = angle + (current_temperature - temperature_compensation_params['base_temp']) * temperature_compensation_params['temp_coeff']

        compensated_angles.append(compensated_angle)

    return compensated_angles



# 获取当前关节角度

current_angles = robot.get_joint_angles()



# 应用温度补偿

compensated_angles = apply_temperature_compensation(current_angles, current_temperature, temperature_compensation_params)



# 发送补偿后的关节角度到机器人

robot.set_joint_angles(compensated_angles)



# 关闭机器人控制器和温度传感器

robot.disconnect()

temperature_sensor.disconnect()

动态误差补偿

动态误差补偿主要是针对机器人在运动过程中产生的误差进行修正。通过实时监测机器人的状态,并根据运动学模型动态调整其运动参数,从而减少动态误差。

例子:动态误差补偿

假设我们使用KUKA KR 3 AGILUS机器人进行精密装配,需要对动态误差进行补偿。以下是一个简单的Python代码示例,使用实时监测数据进行动态误差补偿:


# 导入必要的库

import kuka_robotics_api as kuka

import time



# 初始化机器人控制器

robot = kuka.RobotController('192.168.1.100')



# 定义动态误差补偿参数

dynamic_compensation_params = {

    'velocity_feedback_gain': 0.1,  # 速度反馈增益

    'acceleration_feedback_gain': 0.05  # 加速度反馈增益

}



# 定义动态误差补偿函数

def apply_dynamic_compensation(joint_angles, joint_velocities, joint_accelerations, dynamic_compensation_params):

    """

    对机器人关节角度进行动态误差补偿



    :param joint_angles: 机器人当前的关节角度

    :param joint_velocities: 机器人当前的关节速度

    :param joint_accelerations: 机器人当前的关节加速度

    :param dynamic_compensation_params: 动态误差补偿参数

    :return: 补偿后的关节角度

    """

    compensated_angles = []

    for i in range(6):

        compensated_angle = joint_angles[i] + dynamic_compensation_params['velocity_feedback_gain'] * joint_velocities[i] + dynamic_compensation_params['acceleration_feedback_gain'] * joint_accelerations[i]

        compensated_angles.append(compensated_angle)

    return compensated_angles



# 获取当前关节角度、速度和加速度

current_angles = robot.get_joint_angles()

current_velocities = robot.get_joint_velocities()

current_accelerations = robot.get_joint_accelerations()



# 应用动态误差补偿

compensated_angles = apply_dynamic_compensation(current_angles, current_velocities, current_accelerations, dynamic_compensation_params)



# 发送补偿后的关节角度到机器人

robot.set_joint_angles(compensated_angles)



# 关闭机器人控制器

robot.disconnect()

误差分析与补偿的综合应用

在实际的精密装配应用中,往往需要综合运用多种误差分析和补偿技术,以达到最佳的装配精度。以下是一个综合应用的示例,展示了如何在汽车零部件制造过程中,通过几何误差补偿、温度补偿和动态误差补偿,提高KUKA KR 3 AGILUS机器人的装配精度。

综合应用示例

假设我们使用KUKA KR 3 AGILUS机器人进行汽车零部件的精密装配,需要综合运用几何误差补偿、温度补偿和动态误差补偿技术。以下是一个完整的Python代码示例:


# 导入必要的库

import kuka_robotics_api as kuka

import temperature_sensor as temp

import time



# 初始化机器人控制器

robot = kuka.RobotController('192.168.1.100')



# 初始化温度传感器

temperature_sensor = temp.TemperatureSensor('192.168.1.101')



# 定义几何误差补偿参数

geometric_compensation_params = {

    'joint1_offset': 0.005,  # 第一关节偏移补偿

    'joint2_offset': -0.003, # 第二关节偏移补偿

    'joint3_offset': 0.002,  # 第三关节偏移补偿

    'joint4_offset': -0.001, # 第四关节偏移补偿

    'joint5_offset': 0.001,  # 第五关节偏移补偿

    'joint6_offset': 0.002   # 第六关节偏移补偿

}



# 定义温度补偿参数

temperature_compensation_params = {

    'base_temp': 25,  # 基准温度

    'temp_coeff': 0.001  # 温度系数

}



# 定义动态误差补偿参数

dynamic_compensation_params = {

    'velocity_feedback_gain': 0.1,  # 速度反馈增益

    'acceleration_feedback_gain': 0.05  # 加速度反馈增益

}



# 定义综合补偿函数

def apply_comprehensive_compensation(joint_angles, current_temperature, joint_velocities, joint_accelerations, geometric_compensation_params, temperature_compensation_params, dynamic_compensation_params):

    """

    对机器人关节角度进行综合误差补偿



    :param joint_angles: 机器人当前的关节角度

    :param current_temperature: 当前环境温度

    :param joint_velocities: 机器人当前的关节速度

    :param joint_accelerations: 机器人当前的关节加速度

    :param geometric_compensation_params: 几何误差补偿参数

    :param temperature_compensation_params: 温度补偿参数

    :param dynamic_compensation_params: 动态误差补偿参数

    :return: 补偿后的关节角度

    """

    # 应用几何误差补偿

    compensated_angles = []

    for i in range(6):

        compensated_angle = joint_angles[i] + geometric_compensation_params[f'joint{i+1}_offset']

        compensated_angles.append(compensated_angle)

    

    # 应用温度补偿

    for i in range(6):

        compensated_angle = compensated_angles[i] + (current_temperature - temperature_compensation_params['base_temp']) * temperature_compensation_params['temp_coeff']

        compensated_angles[i] = compensated_angle

    

    # 应用动态误差补偿

    for i in range(6):

        compensated_angle = compensated_angles[i] + dynamic_compensation_params['velocity_feedback_gain'] * joint_velocities[i] + dynamic_compensation_params['acceleration_feedback_gain'] * joint_accelerations[i]

        compensated_angles[i] = compensated_angle

    

    return compensated_angles



# 主循环

while True:

    # 获取当前关节角度、速度和加速度

    current_angles = robot.get_joint_angles()

    current_velocities = robot.get_joint_velocities()

    current_accelerations = robot.get_joint_accelerations()

    

    # 获取当前环境温度

    current_temperature = temperature_sensor.get_temperature()

    

    # 应用综合误差补偿

    compensated_angles = apply_comprehensive_compensation(current_angles, current_temperature, current_velocities, current_accelerations, geometric_compensation_params, temperature_compensation_params, dynamic_compensation_params)

    

    # 发送补偿后的关节角度到机器人

    robot.set_joint_angles(compensated_angles)

    

    # 延时一段时间,模拟实时监测

    time.sleep(0.1)



# 关闭机器人控制器和温度传感器

robot.disconnect()

temperature_sensor.disconnect()

误差补偿的实现步骤

  1. 初始化机器人控制器和传感器:连接机器人控制器和温度传感器,确保数据通信正常。

  2. 获取当前状态数据:通过传感器和机器人控制器获取当前的关节角度、速度、加速度和环境温度。

  3. 应用几何误差补偿:根据几何误差补偿参数,对关节角度进行修正。

  4. 应用温度补偿:根据环境温度变化,对关节角度进行进一步修正。

  5. 应用动态误差补偿:根据关节速度和加速度,对关节角度进行动态调整。

  6. 发送补偿后的关节角度:将补偿后的关节角度发送到机器人控制器,驱动机器人进行精确运动。

  7. 实时监测和调整:通过循环实时监测机器人的状态数据,并不断进行误差补偿,确保机器人在运动过程中的高精度。

误差补偿的效果评估

为了评估误差补偿的效果,可以使用三坐标测量机(CMM)对机器人在不同位置的精度进行测量,并记录补偿前后的数据。通过对比数据,可以直观地看到误差补偿技术的应用效果。

例子:误差补偿效果评估

假设我们使用三坐标测量机(CMM)对KUKA KR 3 AGILUS机器人的精度进行测量,以下是一个简单的Python代码示例,展示如何记录补偿前后的数据并进行对比:


# 导入必要的库

import kuka_robotics_api as kuka

import cmm_measurement as cmm

import time



# 初始化机器人控制器

robot = kuka.RobotController('192.168.1.100')



# 初始化三坐标测量机

cmm = cmm.CMM('192.168.1.102')



# 定义几何误差补偿参数

geometric_compensation_params = {

    'joint1_offset': 0.005,  # 第一关节偏移补偿

    'joint2_offset': -0.003, # 第二关节偏移补偿

    'joint3_offset': 0.002,  # 第三关节偏移补偿

    'joint4_offset': -0.001, # 第四关节偏移补偿

    'joint5_offset': 0.001,  # 第五关节偏移补偿

    'joint6_offset': 0.002   # 第六关节偏移补偿

}



# 定义温度补偿参数

temperature_compensation_params = {

    'base_temp': 25,  # 基准温度

    'temp_coeff': 0.001  # 温度系数

}



# 定义动态误差补偿参数

dynamic_compensation_params = {

    'velocity_feedback_gain': 0.1,  # 速度反馈增益

    'acceleration_feedback_gain': 0.05  # 加速度反馈增益

}



# 定义综合补偿函数

def apply_comprehensive_compensation(joint_angles, current_temperature, joint_velocities, joint_accelerations, geometric_compensation_params, temperature_compensation_params, dynamic_compensation_params):

    """

    对机器人关节角度进行综合误差补偿



    :param joint_angles: 机器人当前的关节角度

    :param current_temperature: 当前环境温度

    :param joint_velocities: 机器人当前的关节速度

    :param joint_accelerations: 机器人当前的关节加速度

    :param geometric_compensation_params: 几何误差补偿参数

    :param temperature_compensation_params: 温度补偿参数

    :param dynamic_compensation_params: 动态误差补偿参数

    :return: 补偿后的关节角度

    """

    # 应用几何误差补偿

    compensated_angles = []

    for i in range(6):

        compensated_angle = joint_angles[i] + geometric_compensation_params[f'joint{i+1}_offset']

        compensated_angles.append(compensated_angle)

    

    # 应用温度补偿

    for i in range(6):

        compensated_angle = compensated_angles[i] + (current_temperature - temperature_compensation_params['base_temp']) * temperature_compensation_params['temp_coeff']

        compensated_angles[i] = compensated_angle

    

    # 应用动态误差补偿

    for i in range(6):

        compensated_angle = compensated_angles[i] + dynamic_compensation_params['velocity_feedback_gain'] * joint_velocities[i] + dynamic_compensation_params['acceleration_feedback_gain'] * joint_accelerations[i]

        compensated_angles[i] = compensated_angle

    

    return compensated_angles



# 定义测量点

measurement_points = [

    {'x': 0.0, 'y': 0.0, 'z': 0.0},

    {'x': 0.1, 'y': 0.1, 'z': 0.1},

    {'x': -0.1, 'y': -0.1, 'z': -0.1}

]



# 记录补偿前后的数据

data = []



# 遍历测量点

for point in measurement_points:

    # 移动机器人到测量点

    robot.move_to(point)

    

    # 获取当前关节角度、速度和加速度

    current_angles = robot.get_joint_angles()

    current_velocities = robot.get_joint_velocities()

    current_accelerations = robot.get_joint_accelerations()

    

    # 获取当前环境温度

    current_temperature = temperature_sensor.get_temperature()

    

    # 记录补偿前的数据

    uncompensated_data = {

        'point': point,

        'angles': current_angles,

        'temperature': current_temperature,

        'velocities': current_velocities,

        'accelerations': current_accelerations,

        'cmm_measurement': cmm.measure()

    }

    

    # 应用综合误差补偿

    compensated_angles = apply_comprehensive_compensation(current_angles, current_temperature, current_velocities, current_accelerations, geometric_compensation_params, temperature_compensation_params, dynamic_compensation_params)

    

    # 发送补偿后的关节角度到机器人

    robot.set_joint_angles(compensated_angles)

    

    # 记录补偿后的数据

    compensated_data = {

        'point': point,

        'angles': compensated_angles,

        'temperature': current_temperature,

        'velocities': current_velocities,

        'accelerations': current_accelerations,

        'cmm_measurement': cmm.measure()

    }

    

    # 将补偿前后的数据添加到记录列表

    data.append({

        'uncompensated': uncompensated_data,

        'compensated': compensated_data

    })



# 关闭机器人控制器和三坐标测量机

robot.disconnect()

cmm.disconnect()



# 输出补偿前后的数据

for entry in data:

    print(f"Point: {entry['uncompensated']['point']}")

    print(f"Uncompensated CMM Measurement: {entry['uncompensated']['cmm_measurement']}")

    print(f"Compensated CMM Measurement: {entry['compensated']['cmm_measurement']}")

    print("\n")



# 评估误差补偿效果

def evaluate_compensation_effect(data):

    """

    评估误差补偿的效果



    :param data: 补偿前后的数据记录

    :return: 误差补偿效果评估结果

    """

    results = []

    for entry in data:

        point = entry['uncompensated']['point']

        uncompensated_error = cmm.calculate_error(entry['uncompensated']['cmm_measurement'], point)

        compensated_error = cmm.calculate_error(entry['compensated']['cmm_measurement'], point)

        improvement = (uncompensated_error - compensated_error) / uncompensated_error * 100

        results.append({

            'point': point,

            'uncompensated_error': uncompensated_error,

            'compensated_error': compensated_error,

            'improvement': improvement

        })

    return results



# 计算误差补偿效果

compensation_results = evaluate_compensation_effect(data)



# 输出误差补偿效果

for result in compensation_results:

    print(f"Point: {result['point']}")

    print(f"Uncompensated Error: {result['uncompensated_error']} mm")

    print(f"Compensated Error: {result['compensated_error']} mm")

    print(f"Improvement: {result['improvement']:.2f}%\n")

误差补偿的实施步骤总结

  1. 初始化机器人控制器和传感器:连接机器人控制器和温度传感器,确保数据通信正常。

  2. 获取当前状态数据:通过传感器和机器人控制器获取当前的关节角度、速度、加速度和环境温度。

  3. 应用几何误差补偿:根据几何误差补偿参数,对关节角度进行修正。

  4. 应用温度补偿:根据环境温度变化,对关节角度进行进一步修正。

  5. 应用动态误差补偿:根据关节速度和加速度,对关节角度进行动态调整。

  6. 发送补偿后的关节角度:将补偿后的关节角度发送到机器人控制器,驱动机器人进行精确运动。

  7. 实时监测和调整:通过循环实时监测机器人的状态数据,并不断进行误差补偿,确保机器人在运动过程中的高精度。

误差补偿的效果评估

  1. 定义测量点:选择机器人在不同位置的测量点,确保覆盖各种工作环境。

  2. 记录补偿前后的数据:在每个测量点,分别记录补偿前后的关节角度、环境温度、速度、加速度以及CMM的测量数据。

  3. 计算误差:使用CMM的测量数据,计算补偿前后的误差。

  4. 评估改进效果:通过对比补偿前后的误差,计算误差补偿的改进百分比,评估误差补偿技术的有效性。

误差补偿的未来发展方向

  1. 多传感器融合:结合多种传感器,如视觉传感器、力传感器等,进一步提高误差补偿的精度和可靠性。

  2. 自适应补偿:开发自适应误差补偿算法,根据实时数据动态调整补偿参数,提高系统的适应性和鲁棒性。

  3. 机器学习:利用机器学习技术,通过对大量数据的学习和训练,自动优化误差补偿模型,进一步提升精度。

  4. 标准化和模块化:将误差补偿技术标准化和模块化,使其更易于集成到不同的机器人系统中,提高应用的广泛性和便捷性。

通过上述的误差分析与补偿技术,可以显著提高机器人在精密装配中的精度和可靠性,满足高精度制造的需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值