1. 命令
sudo /usr/src/tensorrt/bin/trtexec --onnx=yolo.onnx --saveEngine=yolo.trt --fp16 --workspace=512
执行输出完毕,未生成转换文件
...
[03/12/2024-15:49:21] [W] [TRT] Tactic Device request: 347MB Available: 85MB. Device memory is insufficient to use tactic.
[03/12/2024-15:49:22] [W] [TRT] Skipping tactic 3 due to insufficient memory on requested size of 347 detected for tactic 0x0000000000000004.
[03/12/2024-15:49:22] [W] [TRT] Tactic Device request: 347MB Available: 66MB. Device memory is insufficient to use tactic.
[03/12/2024-15:49:22] [W] [TRT] Skipping tactic 7 due to insufficient memory on requested size of 347 detected for tactic 0x000000000000003c.
[03/12/2024-15:49:28] [I] [TRT] Total Activation Memory: 580451328
[03/12/2024-15:49:28] [I] [TRT] Detected 1 inputs and 1 output network tensors.
Killed
2. 解决:输出问题
saveEngine 目录的问题
sudo /usr/src/tensorrt/bin/trtexec --onnx=yolo.onnx --saveEngine=/home/pi/yolo.trt --fp16 --workspace=512
参考:https://forums.developer.nvidia.com/t/about-trtexec/165188
注意1:若编译过程中 jetson nano 内存不足导致被 kill ,建议增大交换内存
参考:https://labelnet.blog.csdn.net/article/details/136537801
注意2:模型转换时间较长,大概 20min 左右,耐心等待
3. 解决:编译内存问题
--memPoolSize=workspace:1800
指定大小,调整合适的大小进行转换,我这里是 1800 转换成功了,试了 512 和 1024 都失败了
/usr/src/tensorrt/bin/trtexec --onnx=yolo.onnx --saveEngine=yolo.trt --fp16 --plugins=./libyolo.so --memPoolSize=workspace:1800
成功示例