机器学习 | 强化学习方法分类汇总 | 概念向

参考学习视频:强化学习方法汇总 (Reinforcement Learning)

  • 包含AI生成内容,感谢D老师❤️

📚Model-Free RL vs Model-Based RL

🐇核心定义

  • Model-Free RL
    • 不依赖环境模型,直接通过试错学习策略(Policy)或价值函数(Value Function)。智能体无需知晓状态转移概率或奖励函数,仅通过与环境交互的经验(如状态、动作、奖励序列)进行学习。
    • 典型算法:Q-Learning、SARSA、Policy Gradients、DQN、PPO、A3C。
  • Model-Based
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啦啦右一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值