Stata:三重差分模型简介

本文介绍了三重差分法(Difference-in-Difference-in-Difference, DDD)在处理实验组和对照组时间趋势差异问题上的作用。以美国B州针对65岁以上老人的医疗保健政策为例,传统双重差分法因不同年龄群体健康状况时间趋势不一致而失效。三重差分法通过引入相邻州的数据,解决了这一问题,提供了更准确的政策效果估计。文章引用了相关文献,并讨论了该方法相对于合成控制法的简易性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接:https://www.lianxh.cn/news/f35dae8f2b0c8.html

1. 为什么使用三重差分法?

双重差分法的重要假设是对照组和实验组的时间趋势一样,而当控制组和实验组的时间趋势不同,则无法得到一致的实验估计量,需要进一步改进双重差分估计量。 平行趋势检验可以看往期推文多期倍分法(DID):平行趋势检验图示。当选择的控制组与实验组时间趋势不同时,可以采用合成控制法(Synthetic Control Method)即对多个对照组加权构造成一个虚拟的对照组和三重差分法 (Difference in Difference in Difference) , 相比较合成控制法,DDD 操作更加简单,本期主要对三重差分法进行介绍。

通过下面具体的例子,我们来说明三重差分法的原理。假设美国 B 州针对 65 岁或以上的老年人 (实验组,Treat = 1) 引入一项新的医疗保健政策,其他年龄群体不适用。考察此政策对健康状况的影响,选用 B 州 65 岁以下群体 (old = 0) 作为对照组。由于人的健康状况随时间的变化并不是线性的,而不同年年龄组的个体的健康状况变化的时间趋势也存在差异,这会导致传统 DID 方法的前提条件——共同趋势假设 (Common Trend) 无法得到满足。简言之,实验组和对照组人群的健康状况随时间的变化趋势不一致。这种时间趋势差异的影响可以通过计算相邻的 A 州 65 岁及以上老年人和年轻群体相对健康情况变化差异来捕捉 (相当于再用一次 DID)。

参考文献

  1. 高级计量经济学及 Stata 应用[M]. 高等教育出版社, 陈强, 2014: 343-344.
  2. 任胜钢, 郑晶晶, 刘东华, 陈晓红. 排污权交易机制是否提高了企业全要素生产率——来自中国上市公司的证据[J]. 中国工业经济, 2019(05): 5-23.
  3. 钱雪松, 唐英伦, 方胜. 担保物权制度改革降低了企业债务融资成本吗?——来自中国《物权法》自然实验的经验证据[J]. 金融研究, 2019(07): 115-134.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值