GENEVAL:an object-focused framework for evaluatong text-ri-image anlignment

1.Introduction

一种自动化的以object为中心的框架,用于评估T2I模型在结构化任务上的能力,GENEVAL围绕着使用一个object检测模型展开,该模型验证生成的图像中是否包含文本提示中指定的对象,模型返回的边界框信息和分割掩码用于验证提示中指定的属性,如计数和object之间的相对位置,这些数据也会传递给其他视觉模型,以评估其他属性,如object颜色分类。

我们对1200张图像的6000个细粒度注释进行人类评估研究,验证geneval和人类判断的一致性。

2.GENEVAL:Our object-focused evaluation framework

2.1 Setup

### Janus-Pro-7B 介绍 #### 概述 Janus-Pro-7B 是由 SiliconFlow 开发的一款先进的多模态生成模型,尤其擅长处理复杂的视觉生成任务。该模型在多个基准测试中表现出色,在 GenEval 和 DPG-Bench 视觉生成评估中的成绩尤为突出[^1]。 #### 特点 - **卓越的准确性**:Janus-Pro-7B 在 GenEval 上的整体准确率达到了80%,显著高于其他同类模型如 Transfusion (63%)、SD3-Medium (74%) 和 DALL-E 3 (67%)。 - **强大的图像生成功能**:通过 Go 语言可以方便地调用 Janus-Pro-7B 进行高质量的图像生成工作。为了实现这一功能,开发者需要准备好 Go 1.20 或更新版本,并确保拥有有效的 SiliconFlow API 令牌用于身份验证和访问控制[^2]。 - **灵活的应用场景支持**:尽管主要应用于图像领域,但基于其出色的性能表现和技术架构设计,Janus-Pro-7B 同样适用于更广泛的任务需求,例如从自然语言描述转换成对应的 SQL 查询语句等跨域应用案例[^3]。 ```go // 示例代码展示如何使用 Go 调用 Janus-Pro-7B 图像生成功能 package main import ( "fmt" "net/http" ) func generateImage(apiToken string, prompt string) { url := "https://api.siliconflow.com/v1/generate/image" reqBody := fmt.Sprintf(`{"prompt": "%s"}`, prompt) client := &http.Client{} request, _ := http.NewRequest("POST", url, strings.NewReader(reqBody)) request.Header.Add("Authorization", "Bearer "+apiToken) request.Header.Add("Content-Type", "application/json") response, err := client.Do(request) if err != nil { fmt.Println(err) return } defer response.Body.Close() // 处理返回的结果... } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值