一键融合多个AI大模型,FuseLLM让你轻松拥有‘全能大模型’!

随着AI技术的飞速发展,大语言模型如LLaMA和Mistral等已成为行业内的热门话题。然而,创建全新的大语言模型不仅成本高昂,而且可能导致新旧模型之间的能力冗余。为了解决这一问题,中山大学和腾讯AI Lab的研究者们带来了一个创新性的解决方案——FuseLLM。

FuseLLM的独特之处在于它能够“融合多个异构大模型”。这不同于传统的模型集成,后者在推理时需要同时运行多个大模型,也不同于权重合并,后者要求合并的模型具有相同结构。FuseLLM能够巧妙地提取不同大模型的知识和能力,然后通过轻量级的持续训练,将这些知识和能力融合到一个全新的大语言模型中。

想象一下,如果我们能够结合多个大语言模型的优点,创建一个更强大、更全面的模型,那将是多么令人兴奋的事情。而FuseLLM正是朝着这个方向迈出的一大步。它不仅提高了模型的效率,还降低了成本,为AI技术的发展开辟了新的道路。

这一创新性的研究为我们展示了大语言模型未来的可能性,也让我们对AI技术的未来充满了期待。

如果有其他疑问,欢迎朋友关注留言!

FuseLLM原理大揭秘:轻松融合多个大语言模型!

传统模型融合方法如集成和权重合并,要么需要同时部署多个模型,要么要求模型结构相同。而FuseLLM则另辟蹊径,从概率分布角度出发,让不同LLM为同一输入文本生成的概率分布反映其内在知识。这样,FuseLLM就能轻松提取并转移这些LLM的集体知识和个体优势。
在这里插入图片描述
实现上,FuseLLM先对齐不同LLM的标记化,再融合它们生成的概率分布。在持续训练过程中,FuseLLM着重减小目标LLM与源LLM之间的概率分布差异。这样,目标LLM就能逐渐吸收源LLM的知识和能力。

为了验证FuseLLM的有效性,研究者们在多个开源LLM上进行了实验,包括Llama-2、OpenLLaMA和MPT等。结果显示,在推理、常识和代码生成等42个任务中,FuseLLM训练的目标模型在大多数任务上都优于源LLM和基线模型。

此外,研究者们还模拟了具有相同架构但功能不同的LLM。通过在这些领域特定的语料库上持续训练单个基础模型,他们发现FuseLLM在结合这些结构相同的LLM的能力方面表现出色,优于传统的集成和权重合并方法。
在这里插入图片描述

Huggingface Models 上发布了 FuseLLM-7B ,它是三个流行的开源 LLMs 的融合,它们具有独特的架构和功能:Llama-2-7B、OpenLLaMA-7B 和 MPT-7B。

FuseLLM-7B 模型地址:https://huggingface.co/bartowski/FuseLLM-7B-exl2

更多内容迁移到这里,欢迎关注知乎:https://zhuanlan.zhihu.com/p/680296590

我是李孟聊AI,独立开源软件开发者,SolidUI作者,对于新技术非常感兴趣,专注AI和数据领域,如果对我的文章内容感兴趣,请帮忙关注点赞收藏,谢谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李孟聊人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值