一、使用Python将YOLO的xml格式的数据集分割为yolo格式的训练集和测试集,代码如下图所示:
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import random
from shutil import copyfile
import chardet
classes=["ball"]
TRAIN_RATIO = 80
def clear_hidden_files(path):
dir_list = os.listdir(path)
for i in dir_list:
abspath = os.path.join(os.path.abspath(path), i)
if os.path.isfile(abspath):
if i.startswith("._"):
os.remove(abspath)
else:
clear_hidden_files(abspath)
def convert(size, box):
dw = 1./size[0]
dh = 1./size[1]
x = (box[0] + box[1])/2.0
y = (box[2] + box[3])/2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(image_id):
file = open('Q:/VOCdevkit/VOC2007/Annotations/%s.xml' %image_id, 'rb')
raw_data = file.read()
result = chardet.detect(raw_data)
encod = result['encoding']
in_file = open('Q:/VOCdevkit/VOC2007/Annotations/%s.xml' %image_id, 'r+',encoding=encod)
out_file = open('Q:/VOCdevkit/VOC2007/YOLOLabels/%s.txt' %image_id, 'w')
try:
tree=ET.parse(in_file)
except Exception as e:
print(image_id,e)
return -1
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
in_file.close()
out_file.close()
return 0
wd = 'Q:/DATAS/train-adas/'
# wd = os.getcwd()
data_base_dir = os.path.join(wd, "VOCdevkit/")
if not os.path.isdir(data_base_dir):
os.mkdir(data_base_dir)
work_sapce_dir = os.path.join(data_base_dir, "VOC2007/")
if not os.path.isdir(work_sapce_dir):
os.mkdir(work_sapce_dir)
annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
if not os.path.isdir(annotation_dir):
os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
if not os.path.isdir(image_dir):
os.mkdir(image_dir)
clear_hidden_files(image_dir)
yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/")
if not os.path.isdir(yolo_labels_dir):
os.mkdir(yolo_labels_dir)
clear_hidden_files(yolo_labels_dir)
yolov10_images_dir = os.path.join(data_base_dir, "images/")
if not os.path.isdir(yolov10_images_dir):
os.mkdir(yolov10_images_dir)
clear_hidden_files(yolov10_images_dir)
yolov10_labels_dir = os.path.join(data_base_dir, "labels/")
if not os.path.isdir(yolov10_labels_dir):
os.mkdir(yolov10_labels_dir)
clear_hidden_files(yolov10_labels_dir)
yolov10_images_train_dir = os.path.join(yolov10_images_dir, "train/")
if not os.path.isdir(yolov10_images_train_dir):
os.mkdir(yolov10_images_train_dir)
clear_hidden_files(yolov10_images_train_dir)
yolov10_images_test_dir = os.path.join(yolov10_images_dir, "val/")
if not os.path.isdir(yolov10_images_test_dir):
os.mkdir(yolov10_images_test_dir)
clear_hidden_files(yolov10_images_test_dir)
yolov10_labels_train_dir = os.path.join(yolov10_labels_dir, "train/")
if not os.path.isdir(yolov10_labels_train_dir):
os.mkdir(yolov10_labels_train_dir)
clear_hidden_files(yolov10_labels_train_dir)
yolov10_labels_test_dir = os.path.join(yolov10_labels_dir, "val/")
if not os.path.isdir(yolov10_labels_test_dir):
os.mkdir(yolov10_labels_test_dir)
clear_hidden_files(yolov10_labels_test_dir)
train_file = open(os.path.join(wd, "yolov10_train.txt"), 'w')
test_file = open(os.path.join(wd, "yolov10_val.txt"), 'w')
train_file.close()
test_file.close()
train_file = open(os.path.join(wd, "yolov10_train.txt"), 'a')
test_file = open(os.path.join(wd, "yolov10_val.txt"), 'a')
list_imgs = os.listdir(image_dir) # list image files
prob = random.randint(1, 100)
print("Probability: %d" % prob)
count_err = 0
for i in range(0,len(list_imgs)):
path = os.path.join(image_dir,list_imgs[i])
if os.path.isfile(path):
image_path = image_dir + list_imgs[i]
voc_path = list_imgs[i]
(nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
(voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
annotation_name = nameWithoutExtention + '.xml'
annotation_path = os.path.join(annotation_dir, annotation_name)
label_name = nameWithoutExtention + '.txt'
label_path = os.path.join(yolo_labels_dir, label_name)
prob = random.randint(1, 100)
print("Probability: %d" % prob)
if(prob < TRAIN_RATIO): # train dataset
if os.path.exists(annotation_path):
result = convert_annotation(nameWithoutExtention) # convert label
if result == -1:
count_err += 1
continue
train_file.write(image_path + '\n')
copyfile(image_path, yolov10_images_train_dir + voc_path)
copyfile(label_path, yolov10_labels_train_dir + label_name)
else: # test dataset
if os.path.exists(annotation_path):
result = convert_annotation(nameWithoutExtention) # convert label
if result == -1:
count_err += 1
continue
test_file.write(image_path + '\n')
copyfile(image_path, yolov10_images_test_dir + voc_path)
copyfile(label_path, yolov10_labels_test_dir + label_name)
print("count error : ", count_err)
train_file.close()
test_file.close()
上述代码可以兼容GBK、UTF-8等多种编码格式的xml标注文件。
二、使用时需要修改:
1、修改classes为自己的YOLO检测类别。
2、修改Open的xml文件存放路径。