使用Python将YOLO的xml格式的数据集分割为yolo格式的训练集和测试集

一、使用Python将YOLO的xml格式的数据集分割为yolo格式的训练集和测试集,代码如下图所示:

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import random
from shutil import copyfile
import chardet


classes=["ball"]

TRAIN_RATIO = 80

def clear_hidden_files(path):
    dir_list = os.listdir(path)
    for i in dir_list:
        abspath = os.path.join(os.path.abspath(path), i)
        if os.path.isfile(abspath):
            if i.startswith("._"):
                os.remove(abspath)
        else:
            clear_hidden_files(abspath)

def convert(size, box):
    dw = 1./size[0]
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def convert_annotation(image_id):

    file = open('Q:/VOCdevkit/VOC2007/Annotations/%s.xml' %image_id, 'rb')
    raw_data = file.read()
    result = chardet.detect(raw_data)
    encod = result['encoding']
    in_file = open('Q:/VOCdevkit/VOC2007/Annotations/%s.xml' %image_id, 'r+',encoding=encod)
    out_file = open('Q:/VOCdevkit/VOC2007/YOLOLabels/%s.txt' %image_id, 'w')

    try:
        tree=ET.parse(in_file)
    except Exception as e:
        print(image_id,e)
        return -1
    
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    in_file.close()
    out_file.close()
    return 0

wd = 'Q:/DATAS/train-adas/'
# wd = os.getcwd()
data_base_dir = os.path.join(wd, "VOCdevkit/")
if not os.path.isdir(data_base_dir):
    os.mkdir(data_base_dir)
work_sapce_dir = os.path.join(data_base_dir, "VOC2007/")
if not os.path.isdir(work_sapce_dir):
    os.mkdir(work_sapce_dir)
annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
if not os.path.isdir(annotation_dir):
        os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
if not os.path.isdir(image_dir):
        os.mkdir(image_dir)
clear_hidden_files(image_dir)
yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/")
if not os.path.isdir(yolo_labels_dir):
        os.mkdir(yolo_labels_dir)
clear_hidden_files(yolo_labels_dir)
yolov10_images_dir = os.path.join(data_base_dir, "images/")
if not os.path.isdir(yolov10_images_dir):
        os.mkdir(yolov10_images_dir)
clear_hidden_files(yolov10_images_dir)
yolov10_labels_dir = os.path.join(data_base_dir, "labels/")
if not os.path.isdir(yolov10_labels_dir):
        os.mkdir(yolov10_labels_dir)
clear_hidden_files(yolov10_labels_dir)
yolov10_images_train_dir = os.path.join(yolov10_images_dir, "train/")
if not os.path.isdir(yolov10_images_train_dir):
        os.mkdir(yolov10_images_train_dir)
clear_hidden_files(yolov10_images_train_dir)
yolov10_images_test_dir = os.path.join(yolov10_images_dir, "val/")
if not os.path.isdir(yolov10_images_test_dir):
        os.mkdir(yolov10_images_test_dir)
clear_hidden_files(yolov10_images_test_dir)
yolov10_labels_train_dir = os.path.join(yolov10_labels_dir, "train/")
if not os.path.isdir(yolov10_labels_train_dir):
        os.mkdir(yolov10_labels_train_dir)
clear_hidden_files(yolov10_labels_train_dir)
yolov10_labels_test_dir = os.path.join(yolov10_labels_dir, "val/")
if not os.path.isdir(yolov10_labels_test_dir):
        os.mkdir(yolov10_labels_test_dir)
clear_hidden_files(yolov10_labels_test_dir)

train_file = open(os.path.join(wd, "yolov10_train.txt"), 'w')
test_file = open(os.path.join(wd, "yolov10_val.txt"), 'w')
train_file.close()
test_file.close()
train_file = open(os.path.join(wd, "yolov10_train.txt"), 'a')
test_file = open(os.path.join(wd, "yolov10_val.txt"), 'a')
list_imgs = os.listdir(image_dir) # list image files
prob = random.randint(1, 100)
print("Probability: %d" % prob)

count_err = 0

for i in range(0,len(list_imgs)):
    path = os.path.join(image_dir,list_imgs[i])
    if os.path.isfile(path):
        image_path = image_dir + list_imgs[i]
        voc_path = list_imgs[i]
        (nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
        (voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
        annotation_name = nameWithoutExtention + '.xml'
        annotation_path = os.path.join(annotation_dir, annotation_name)
        label_name = nameWithoutExtention + '.txt'
        label_path = os.path.join(yolo_labels_dir, label_name)

    prob = random.randint(1, 100)
    print("Probability: %d" % prob)
    if(prob < TRAIN_RATIO): # train dataset
        if os.path.exists(annotation_path):
            
            result = convert_annotation(nameWithoutExtention) # convert label
            if result == -1:
                count_err += 1
                continue
            
            train_file.write(image_path + '\n')
            copyfile(image_path, yolov10_images_train_dir + voc_path)
            copyfile(label_path, yolov10_labels_train_dir + label_name)
    else: # test dataset
        if os.path.exists(annotation_path):
            
            result = convert_annotation(nameWithoutExtention) # convert label
            if result == -1:
                count_err += 1
                continue
            
            test_file.write(image_path + '\n')
            copyfile(image_path, yolov10_images_test_dir + voc_path)
            copyfile(label_path, yolov10_labels_test_dir + label_name)

print("count error : ", count_err)
train_file.close()
test_file.close()

上述代码可以兼容GBK、UTF-8等多种编码格式的xml标注文件。

二、使用时需要修改:

1、修改classes为自己的YOLO检测类别。

2、修改Open的xml文件存放路径。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦实学习室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值