MATLAB算法实战应用案例精讲-【人工智能】机器人标定方法

本文详细介绍了机器人标定的必要性、理论基础与多种方法,包括相机固定不同视角下的标定、旋转中心计算、零点标定、OpenCV的九点标定法以及运动学和动力学标定。通过MATLAB实现,探讨了标定技术在提高机器人精度和智能制造业中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

算法原理

为什么机器人需要标定?

哪种情况不需要标定?

理论详解

相机固定不动, 上往下看引导机器人移动

相机固定不动, 下往上看

相机固定在机器人上,离旋转中心较近

相机固定在机器人上,离旋转中心很远

旋转中心标定说明

旋转中心标定说明

STD方法的计算:

求旋转中心方法

旋转中心标定—计算补偿

零点标定方法

零点标定

反标定

​OpenCV 机器人手眼标定(九点标定法)

标定技术

运动学标定

动力学标定

离线辨识

在线辨识

TCP标定方法

深度相机手眼标定方法

深度相机手眼标定方法的应用前景


 

前言

随着我国产业升级以及智能制造领域蓬勃发展,工业机器人已成为推进制造强国建设的关键支撑装备。当前,国内工业机器人产业规模不断扩大,相关产品应用潜力逐步释放,整体产业链日趋完善,工业机器人在工业制造领域的应用范围也越来越广泛,如汽车零部件的制造、机械加工、焊接、上下料、磨削抛光、搬运码垛、装配、喷涂等。然而由于机器人长期工作,导致机械轴承产生磨损,进而影响其精度。因此,需要定期对机器人运动学参数进行校准。 

算法原理

为什么机器人需要标定?

影响机器人本体精度因素分为两大类:运动学因素——加工误差、机械公差/装配误差、减速器精度、减速器空程等;动力学因素——质量、惯性张量、摩擦力、关节柔性、连杆柔性。

机器人本体的实际精度和理论设计模型可能会存在一定的误差。为了使机器人本体达到与理论设计模型一致,提高机器人点精度和轨迹精度或者能够完全以编程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值