MATLAB基础应用精讲-【数模应用】t 检验(附Java代码实现)

目录

前言

几个高频面试题目

和正态分布的区别

算法原理

什么是t检验

应用条件

适用情况:

分类

构造T检验量 t-stat

应用举例

1.单样本均值检验

2.两独立样本均值检验

3.配对样本均值检验

4.回归系数的显著性检验

假设检验的步骤

建立检验假设和确定检验水准

选定检验方法和计算检验统计量

 确定P值和做出推断结论

SPSSAU

t 检验案例

1、背景

2、理论

3、操作

4、SPSSAU输出结果

5、文字分析

6、剖析

疑难解惑

什么样的数据格式才适合?

X的组别只能为两组(比如男和女)!?

关于效应量(effect size)说明?

t检验分析步骤

独立样本t检验

配对t检验

单样本t检验

 代码实现

JAVA

单样本 t 检验

双样本 t 检验

配对 t 检验


前言

t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布。 

几个高频面试题目

和正态分布的区别

    在概率论和统计学中,t-分布(t-distribution)用于根据小样本来估计呈正态分布且方差未知的总体的均值。如果总体方差已知或者在样本数量足够多时,则应该用正态分布来估计总体均值。 [1]
    t分布曲线形态与n(确切地说与自由度df)大小有关。与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df=∞时,t分布曲

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值