MATLAB基础应用精讲-【数模应用】遗传算法优化车间调度问题(附python和MATLAB代码实现)

目录

前言

算法原理

遗传算法的基本思想

 遗传算法的基本步骤

遗传算法车间调度问题思路

1.车间调度问题描述

2.车间调度问题的分类

3.柔性作业车间调度问题(FJSP)描述

用遗传算法求解FJSP

混合流水车间调度问题

解题思路

代码实现

JS

python

MATLAB


前言

遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和生物进化过程的智能优化算法。在自然界中,自从达尔文提出“优胜劣汰,适者生存”物种进化理论之后,研究学者对生物进化的过程进行了长久而又深远的研究。物种通过母代的繁衍形成新的下一代个体,新一代个体中,大多数个体由于发生染色体交叉过程会与母代类似,少数个体由于发生了变异则与母代不同。大自然作为自然选择的执行者,在生存资源和外界环境的变化、个体不断进行竞争的过程中,将适应能力强的个体留下,而淘汰适应能力差的个体,这种自然选择的过程为人类提供了一种全新的解决问题的方式。

1965年,John H. Holland首次引用了生物的进化机制来解决问题,他的学生在论文中也首次提出“遗传算法”的概念。1975年, Holland概括性总结论述了遗传算法。几十年来,越来越多的研究学者加入到遗传算法的研究中,并取得了丰富的研究成果。随着研究的深入,遗传算法以其操作简单、容易实现等优点,逐渐应用于各个领域,不仅在函数优化、组合优化等方面有所建树,同时在应用层面如机器学习、生产调度、自动控制、图像处理、数据挖掘等方面也有很广泛的应用。

算法原理

遗传算法的基本思想

生物的进化是通过染色体来实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值