目录
前言
遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和生物进化过程的智能优化算法。在自然界中,自从达尔文提出“优胜劣汰,适者生存”物种进化理论之后,研究学者对生物进化的过程进行了长久而又深远的研究。物种通过母代的繁衍形成新的下一代个体,新一代个体中,大多数个体由于发生染色体交叉过程会与母代类似,少数个体由于发生了变异则与母代不同。大自然作为自然选择的执行者,在生存资源和外界环境的变化、个体不断进行竞争的过程中,将适应能力强的个体留下,而淘汰适应能力差的个体,这种自然选择的过程为人类提供了一种全新的解决问题的方式。
1965年,John H. Holland首次引用了生物的进化机制来解决问题,他的学生在论文中也首次提出“遗传算法”的概念。1975年, Holland概括性总结论述了遗传算法。几十年来,越来越多的研究学者加入到遗传算法的研究中,并取得了丰富的研究成果。随着研究的深入,遗传算法以其操作简单、容易实现等优点,逐渐应用于各个领域,不仅在函数优化、组合优化等方面有所建树,同时在应用层面如机器学习、生产调度、自动控制、图像处理、数据挖掘等方面也有很广泛的应用。
算法原理
遗传算法的基本思想
生物的进化是通过染色体来实现