MATLAB算法实战应用案例精讲-【数模应用】多城市多应急物流中心选址问题(附python和MATLAB代码实现)

目录

前言

算法原理

物流选址问题

1 LRP问题本质

2 LRP重难点

3 LRP思路

考虑中断风险的应急物流选址-库存-路径问题

 设施选址问题(Facility Location Problem, FLP)

一、选址理论方法

二、数学模型

2.1 P-中值模型

2.2 p-中心 (p-center) 模型

​编辑

2.3 集合覆盖模型

2.4 重心法(Centroid Method)

其它选址问题

城市应急物流配送中心选址方法分析

2.1. 配送中心选址常用方法

2.2. K-Means 聚类方法

2.3. 重心法

2.4. 基于 K-Means 聚类的重心法的改进

应用案例-供应链产能受限选址模型

一、设施选址问题

1.1 无容量设施选址方法

1.2 带容量限制的设施选址

二、产能受限型工厂选址模型

三、案例分析

代码实现

python

MATLAB

基于禁忌搜索的物流中心选址


 

前言

选址问题是指在某个区域内选择设施的位置使所需的目标达到最优。选址问题也是一种互斥的计划问题。

例如投资场所的选址:企业要在 m 个候选位置选择若干个建厂,已知建厂费用、运输费及 n 个地区的产品需求量,应如何进行选址。

选址问题是运筹学中经典的问题之一,选址问题在生产生活、物流、甚至军事中都有着非常广泛的应用,如工厂、仓库、急救中心、消防站、垃圾处理中心、物流中心、导弹仓库的选址等。更重要的,选址问题也是数模竞赛的热点问题。

选址是重要的长期决策,选址的好坏直接影响到服务方式、服务质量、服务效率、服务成本等,从而影响到利润和市场竞争力,选址问题的研究有着重大的经济、社会和军事意义。

算法原理

选址问题有四个基本要素:设施、区域、距离和优化目标。
1.1 设施

选址问题中所说的设施,在具体题目中可以是工厂、仓库、服务站等形式。
1.2 区域

选址问题中所说的区域,在具体题目中可以是工厂、车间的内部布局,也可以是给定的某个地区、甚至空间范围。

按照规划区域的特征,可以分为连续选址问题和离散选址问题。连续选址问题,设施可以布局在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值