leetcode-多数元素

本文探讨了在数组中寻找出现次数超过一半的多数元素的几种有效算法,包括排序法、Hash表法及Boyer-Moore投票算法,对比了各种方法的时间与空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素。

你可以假设数组是非空的,并且给定的数组总是存在多数元素。

示例 1:

输入: [3,2,3]
输出: 3
示例 2:

输入: [2,2,1,1,1,2,2]
输出: 2

我的思路

排序,位置在n/2的值即为众数。

时间复杂度:O(nlgn)
  用 Java 将数组排序开销都为 O(nlgn) ,它占据了运行的主要时间。
空间复杂度:O(1) 或者 O(n)
  我们将 nums 就地排序,如果不能就地排序,我们必须使用线性空间将 nums 数组拷贝,然后再排序。

我的解

/*
 * @lc app=leetcode.cn id=169 lang=java
 *
 * [169] 多数元素
 */

// @lc code=start
class Solution {
    public int[] ab(int []a){

        int i;
        for(i=0;i<a.length-1;i++){
            int k = i;
            for(int j = k+1;j<a.length;j++){
                if(a[i]>a[j]){
                    int t = a[i];
                    a[i] = a[j];
                    a[j] = t;
                }
            }
        }
        return a;

    }

    public int majorityElement(int[] nums) {
        nums = ab(nums);

        return nums[nums.length/2];


    }
}
// @lc code=end


其他思路

方案一:hash表方式,额外定义一个hashmap,key为每个元素值,value为每个元素的个数,找到最大的value对应的key即可。

时间复杂度:O(n)
空间复杂度:O(n)

方案三: Boyer-Moore 投票算法。如果我们把众数记为 +1 ,把其他数记为 −1 ,将它们全部加起来,显然和大于 0 ,从结果本身我们可以看出众数比其他数多。

时间复杂度:O(n)
Boyer-Moore 算法严格执行了 n 次循环,所以时间复杂度是线性时间的。
空间复杂度:O(1)
Boyer-Moore 只需要常数级别的额外空间。

看到一个用python写的,感觉很简洁
链接在这里:

https://blog.csdn.net/sunhaiting666/article/details/103817335

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值