题目
给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素。
你可以假设数组是非空的,并且给定的数组总是存在多数元素。
示例 1:
输入: [3,2,3]
输出: 3
示例 2:
输入: [2,2,1,1,1,2,2]
输出: 2
我的思路
排序,位置在n/2的值即为众数。
时间复杂度:O(nlgn)
用 Java 将数组排序开销都为 O(nlgn) ,它占据了运行的主要时间。
空间复杂度:O(1) 或者 O(n)
我们将 nums 就地排序,如果不能就地排序,我们必须使用线性空间将 nums 数组拷贝,然后再排序。
我的解
/*
* @lc app=leetcode.cn id=169 lang=java
*
* [169] 多数元素
*/
// @lc code=start
class Solution {
public int[] ab(int []a){
int i;
for(i=0;i<a.length-1;i++){
int k = i;
for(int j = k+1;j<a.length;j++){
if(a[i]>a[j]){
int t = a[i];
a[i] = a[j];
a[j] = t;
}
}
}
return a;
}
public int majorityElement(int[] nums) {
nums = ab(nums);
return nums[nums.length/2];
}
}
// @lc code=end
其他思路
方案一:hash表方式,额外定义一个hashmap,key为每个元素值,value为每个元素的个数,找到最大的value对应的key即可。
时间复杂度:O(n)
空间复杂度:O(n)
方案三: Boyer-Moore 投票算法。如果我们把众数记为 +1 ,把其他数记为 −1 ,将它们全部加起来,显然和大于 0 ,从结果本身我们可以看出众数比其他数多。
时间复杂度:O(n)
Boyer-Moore 算法严格执行了 n 次循环,所以时间复杂度是线性时间的。
空间复杂度:O(1)
Boyer-Moore 只需要常数级别的额外空间。
看到一个用python写的,感觉很简洁
链接在这里:
https://blog.csdn.net/sunhaiting666/article/details/103817335