快手开源了个“会偷懒”的AI,结果把所有人都惊呆了

目录

前言

 一、AI的“牛角尖”困境:你好,请问现在几点?AI思考了30秒

二、快手的解法:给AI装上“直觉”和“大脑”的切换开关

三、如何教会一个AI“灵活变通”?

3.1 第一步:准备一套“偏科”的教材

3.2 第二步:找个“超级家教”进行高效辅导

3.3 第三步:引入“奖惩分明”的强化学习

四、那么,这个“会偷懒”的AI,实战效果如何?

结语:从“大力出奇迹”到“聪明地工作”


  🎬 攻城狮7号个人主页

🔥 个人专栏:《AI前沿技术要闻》

⛺️ 君子慎独!

 🌈 大家好,欢迎来访我的博客!
⛳️ 此篇文章主要介绍 快手开源KAT-V1大模型
📚 本期文章收录在《AI前沿技术要闻》,大家有兴趣可以自行查看!
⛺️ 欢迎各位 ✔️ 点赞 👍 收藏 ⭐留言 📝!

前言

        最近,AI圈发生了一件非常有意思的事。

        快手,没错,就是那个我们天天刷短视频的快手,突然在AI领域放了个大招:他们开源了一个叫 KAT-V1 的大模型。

        消息一出,各路技术大神和AI爱好者都跑去围观。为什么?因为这个模型有个非常“奇葩”的特性——它居然学会了“偷懒”

        你没听错。在所有AI都在拼命证明自己“多能思考”、“多会推理”的今天,快手反其道而行之,教他们的AI如何“在该偷懒的时候果断偷懒”。

        结果呢?这个“会偷懒”的AI,不仅没变笨,反而在多个高难度测试中,性能直接起飞,把一众以“勤奋思考”著称的开源模型都甩在了身后。

        这就很有意思了。今天,我们就用大白话聊聊,为什么教AI“偷懒”反而是个天才的想法,以及快手到底是怎么做到的。

        模型开源地址:https://huggingface.co/Kwaipilot/KAT-V1-40B

        技术报告地址:https://arxiv.org/pdf/2507.08297

 一、AI的“牛角尖”困境:你好,请问现在几点?AI思考了30秒

        在聊快手的新模型之前,我们得先说说现在很多顶级AI模型都存在的一个通病——过度思考(Overthinking)。

        自从OpenAI开启了“让AI先思考再回答”的潮流后,各大厂商纷纷跟进。它们的模型在回答你之前,都会在脑子里进行一番详细的“内心戏”,生成一大堆推理步骤,也就是我们常说的“思维链(Chain of Thought)”。

        这在处理复杂问题,比如“帮我写一段Python代码,模拟小球在旋转的六边形里碰撞”时,确实非常有用。它能保证AI思路清晰,逻辑严密。

        但问题来了,这些AI好像得了“强迫症”,不管你问什么,它都要先走一遍这个复杂的思考流程。

        这就导致了非常尴尬的场面:

        > 你问:“你好,请问现在几点?”

        > AI(内心戏):“好的,用户想知道现在的时间。首先,我需要确定用户的时区。其次,我需要访问一个精确的时间服务器。然后,我要将服务器返回的UTC时间转换为用户所在时区的本地时间。最后,我需要用友好的语言格式化这个时间并回答用户……”

        > (30秒后)

        > AI(回答):“您好,根据我的计算,现在是北京时间下午3点15分。”

        你是不是也觉得很崩溃?

        这种“凡事都要钻牛角尖”的模式,带来了三大问题:

        (1)慢得要死:响应时间被无谓地拉长,让人感觉AI很“笨重”。

        (2)浪费惊人:每一次多余的思考,都在燃烧着昂贵的计算资源和电力,对于大规模应用来说,成本高得吓人。

        (3)可能帮倒忙:为了显得在思考,AI有时会编造一些看似有理、实则错误的中间步骤,反而增加了误导用户的风险。

        说白了,这些AI就像一个智商180但情商为0的“学霸”,缺乏人类那种根据情况快速切换思考模式的灵活性。

二、快手的解法:给AI装上“直觉”和“大脑”的切换开关

        快手的Kwaipilot团队敏锐地注意到了这个问题。他们想,能不能让AI自己学会判断:“这个问题简单,我凭直觉秒回就行”和“这个问题复杂,我得启动大脑好好琢磨一下”?

        于是,KAT-V1 (AutoThink模型) 诞生了。

        它的核心思想,就是给AI装上了一个自动思考(AutoThink)的开关。

        遇到简单问题(比如“法国的首都是哪里?”),KAT-V1会直接切换到“非思考模式”,跳过冗长的推理,像人类的直觉一样,快速给出答案。

        遇到复杂问题(比如上面那个小球编程题),它会自动切换到“思考模式”,调动全部算力,进行深入的分析和规划。

        最关键的是,这个“切换”动作,完全由AI自己决定,不需要人类干预。它学会了“看人下菜碟”,根据任务的难度,智能地分配自己的脑力。

三、如何教会一个AI“灵活变通”?

        那么,快手是如何把一个“死脑筋”的AI,调教成一个“情商智商双在线”的灵活胖子的呢?主要靠三步:

3.1 第一步:准备一套“偏科”的教材

        他们给模型准备了海量的学习资料,但这些资料被精心分成了两类:

        (1)非思考数据:涵盖科学、常识、通用知识等,答案直接明了,不需要绕弯子。

        (2)思考数据:包含复杂的数学题、编程任务、逻辑推理等,并附带了由其他顶尖AI(比如DeepSeek)生成的高质量解题过程(长思维链)。

        通过学习这套“偏科”教材,KAT-V1首先就建立了一个基本概念:原来问题是分难易的,有些需要想,有些不需要。

3.2 第二步:找个“超级家教”进行高效辅导

        从零开始训练一个大模型太慢也太贵了。快手采用了更聪明的方法——知识蒸馏。

        简单来说,就是请一个更大、更强的“教师模型”,把它的知识“蒸馏”出来,喂给KAT-V1这个“学生模型”。

        但快手的“蒸馏”方法很特别。他们用了一种叫MTP(多Token预测)的技术。传统教学是一个字一个字地教,而MTP相当于让“老师”一次性说一句话,“学生”也试着一次性理解一句话。这极大地提高了学习效率,让KAT-V1在冷启动阶段,只用了传统方法1/30的成本,就达到了很高的水平。

3.3 第三步:引入“奖惩分明”的强化学习

        这是最核心、最有趣的一步。模型学会了被动切换还不够,得让它主动、智能地去判断。

        快手团队独创了一种叫 Step-SRPO 的强化学习方法。你可以把它想象成一个精密的“奖惩系统”:

        判断奖励:如果一个难题,模型正确地选择了“思考模式”,就给它一个“判断正确奖”。如果一个简单题,模型正确地选择了“非思考模式”,也给它奖励。反之,如果它对简单问题“小题大做”,就要受罚。

        答案奖励:光判断对还不行,最终答案也得对。答对了,再给一个“结果正确奖”。

        在这个双重奖励机制的引导下,KAT-V1在海量的训练中,为了获得最高总分,逐渐摸索出了一个最优策略:既要保证答案的准确性,又要尽可能地“偷懒”,节约思考成本。

        训练数据显示,随着学习的进行,模型选择开启“思考模式”的比例稳步下降。它变得越来越“聪明”,知道力气要用在刀刃上。

四、那么,这个“会偷懒”的AI,实战效果如何?

        理论说再多,不如直接看疗效。

        (1)性能逆天:40B参数量的KAT-V1,在自动思考模式下,性能居然能追平6850亿参数的新版DeepSeek-R1。用更小的代价,办了更大的事。

        (2)代码能力惊艳:在那个复杂的小球编程题中,KAT-V1生成的代码效果流畅自然,甚至优于一些专门的推理模型。

        (3)快得飞起:在处理一些简单任务时,其他模型可能要花将近1分钟去“过度思考”,而KAT-V1能正确识别任务的简单性,迅速给出高质量答案,延迟极低。

        (4)token消耗暴降:因为它学会了不在简单问题上啰嗦,平均token消耗相比同类推理模型降低了20%-30%,这意味着更低的部署成本。

结语:从“大力出奇迹”到“聪明地工作”

        快手KAT-V1的开源,给整个AI行业带来了一个非常重要的启示:

        AI的发展,正在从“卷参数、卷算力”的蛮力阶段,慢慢走向一个更高级的阶段——追求效率和智能。

        一个真正聪明的AI,不应该只是一个知识渊博、算力强大的“傻大个”,而应该更像一个经验丰富的专家,懂得什么时候该深思熟虑,什么时候该依靠直觉。

        KAT-V1的出现,正是朝着这个方向迈出的坚实一步。它告诉我们,让AI学会“偷懒”,恰恰是让它变得更强大、更实用、也更接近人类智慧的开始。

        这把快手递过来的、更聪明的“屠龙刀”,无疑让未来的AI应用充满了更多想象空间。

看到这里了还不给博主点一个:
⛳️ 点赞☀️收藏 ⭐️ 关注

💛 💙 💜 ❤️ 💚💓 💗 💕 💞 💘 💖
再次感谢大家的支持!
你们的点赞就是博主更新最大的动力!

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

攻城狮7号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值