一、数据处理与准备
(一)数据加载
- 内置数据集:Sklearn 自带一些经典数据集,如鸢尾花数据集(load_iris)、波士顿房价数据集(load_boston)等。这些数据集方便初学者快速上手实践,可直接用于算法测试与学习,了解数据的基本特征与分布情况。例如,通过加载鸢尾花数据集,可以直观地看到花瓣与花萼的长度、宽度等特征数据。
- 外部数据读取:能够读取常见格式的外部数据,如 CSV 文件(可使用 pandas 库先读取再转换为 sklearn 适用格式)。在读取过程中,需注意数据的编码格式,避免出现乱码导致数据读取错误。同时,要正确识别数据中的特征列与目标列,确保数据划分准确,比如在处理一个销售数据 CSV 文件时,准确区分产品特征与销售金额目标列。
- 数据格式转换:将原始数据转换为适合 sklearn 算法处理的格式,通常是二维数组或稀疏矩阵形式。对于文本数据,可能需要进行独热编码(One-Hot Encoding)等操作,将分类变量转换为数值型。例如,将颜色类别变量转换为独热编码后,每个颜色类别对应一个二进制向量,便于机器学习模型处理。
(二)数据预处理
- 缺失值处理:可采用删除含有缺失值的样本或特征(如 dropna 函数),或者填充缺失值(如使用均值、中位数填充,SimpleImputer 类)的方法。在选择处理方式时,要考虑数据的特点与缺失值的比例。若数据量较大且缺失值比例较小,删除可能影响不大;若缺失值较多,填充可能更合适,例如在处理一份含有少量缺失年龄值的用户数据时,可根据整体年龄分布情况填充中位数。
- 标准化与归一化:标准化(StandardScaler)可使数据特征服从标准正态分布,而归一化(MinMaxScaler)将数据缩放到特定区间,如 [0, 1]。标准化有助于基于梯度下降的算法收敛更快,归一化在某些特定算法或数据可视化场景中有优势。比如在图像数据处理中,归一化可使像素值在合适区间,便于后续操作。
- 特征编码:对分类特征进行编码,除了独热编码,还有 OrdinalEncoder 可将分类特征转换为有序数值。在处理具有顺序关系的分类变量时,如产品等级(高、中、低),OrdinalEncoder 能保留这种顺序信息,使模型更好地学习特征与目标之间的关系。
(三)特征选择
- 过滤式方法:基于特征的统计量或相关性等指标进行选择,如卡方检验(chi2)选择与目标变量相关性高的特征。这种方法计算速度相对较快,不依赖于具体的机器学习模型。例如在文本分类中,通过卡方检验筛选出与不同类别相关性强的词汇特征,减少特征维度。
- 包裹式方法:将特征选择视为一个搜索问题,以模型的性能评估指标为指导进行特征子集的搜索,如递归特征消除(RFE)。它与具体的机器学习模型紧密结合,能选择出对模型性能提升最有帮助的特征组合。比如在支持向量机模型中,使用 RFE 逐步剔除不重要的特征,找到最优特征子集。
- 嵌入式方法:将特征选择融入到模型的训练过程中,如 Lasso 正则化(La