牛客网刷题之滑动窗口的最大值(一天一道编程题之五十六天)

本文介绍了一种求解滑动窗口最大值的高效算法,使用双端队列存储窗口内元素的下标,实现快速查找和更新最大值。通过具体实例展示了算法的运行过程,适用于处理大量数据流中的动态最大值问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}; 针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个: {[2,3,4],2,6,2,5,1}, {2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5,1}, {2,3,4,[2,6,2],5,1}, {2,3,4,2,[6,2,5],1}, {2,3,4,2,6,[2,5,1]}。

思路:

用一个双端队列,队列第一个位置保存当前窗口的最大值,当窗口滑动一次

1.判断当前最大值是否过期

2.新增加的值从队尾开始比较,把所有比他小的值丢掉

代码:

import java.util.*;
public class Solution {
    public ArrayList<Integer> maxInWindows(int [] num, int size) {
        if (num == null || num.length == 0 || size <= 0 || num.length < size) {
            return new ArrayList<Integer>();
        }
        ArrayList<Integer> result = new ArrayList<>();
        //双端队列,用来记录每个窗口的最大值下标
        LinkedList<Integer> qmax = new LinkedList<>();
        for (int i = 0; i < num.length; i++) {
            while (!qmax.isEmpty() && num[qmax.peekLast()] < num[i]) {
                qmax.pollLast();
            }
            qmax.addLast(i);
            //判断队首元素是否过期
            if (qmax.peekFirst() == i - size) {
                qmax.pollFirst();
            }
            //向result列表中加入元素
            if (i >= size - 1) {
                result.add(num[qmax.peekFirst()]);
            }
        }
        return result;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值