【AIOT】数字信号基础

本文介绍了AIOT领域的数字信号基础,涵盖FMCW调制技术及其FFT变换,重点讨论了IF信号的相位、多目标雷达的范围解析及波束管理。此外,还涉及IQ信号、正交频复用调制技术和MUSIC算法在空间谱估计中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文:https://liudongdong1.github.io/2020/07/01/aiot/mmwave/signalbase/

0. 数字信号调制

字通信系统需要将信息0-1比特流(例如 0101110101),从发端通过无线信道发送到收端。在发端发送前,需要将0-1比特流调制到模拟信号上。常用的调制方式有BPSK, QPSK, 16QAM, 64QAM等。其理论基础是通过图1所示的星座图,根据比特流确定调制信号:

image-20201015192744797

<think>好的,我现在需要处理用户关于AIoT实训中交通相关案例或项目的查询。首先,我需要明确用户的需求。用户提到了“AIoT实训”、“交通”、“案例”、“示例”、“项目”这些关键词,所以应该寻找结合了人工智能(AI)和物联网(IoT)在交通领域的实训项目或案例。 接下来,我要回顾系统提供的引用内容。引用1提到了TransGPT交通大模型,功能包括交通预测、智能咨询、公共交通服务等,这可能与AIoT相关。引用2和3介绍了唯众的AI实训平台,整合了边缘计算、物联网、AI等技术,适合实训项目。这些信息可以作为基础,但用户需要具体的案例或项目示例,可能需要结合这些引用中的技术架构来构建答案。 然后,我需要生成相关的案例。考虑到AIoT在交通中的应用,可能的实训项目包括智能交通信号控制、自动驾驶模拟、车路协同系统、智慧停车管理、交通流量预测等。每个项目需要结合AI和IoT技术,例如使用传感器(IoT)收集数据,AI进行数据分析或决策,再通过实训平台实现。 另外,要确保回答结构清晰,分点说明每个案例,并引用提供的参考资料。例如,TransGPT可以用于交通预测项目,唯众的平台可以支持这些项目的开发。同时,需要生成相关问题,帮助用户进一步探索。 需要检查是否遵循了格式要求:行内公式用$...$,独立公式用$$...$$,但用户的问题中可能不涉及数学公式,所以可能不需要使用。但如果有技术细节可能需要,比如算法名称,但这里可能不需要。然后使用中文回答,确保LaTeX语法正确,不过这里可能用不上太多数学表达式。 最后,生成的问题应围绕AIoT实训交通案例,比如技术组成、平台选择、挑战、评估方法等。确保问题自然相关,帮助用户深入理解。</think>根据AIoT技术在交通领域的实训需求,结合行业应用场景,以下是5个典型实训案例及实现方式: ### 一、智能交叉口信号优化系统 1. 使用物联网传感器实时采集$v(t)$车流量、$d(t)$排队长度等参数 2. 基于TransGPT的预测模型生成$T_{opt}$最优信号周期 3. 部署边缘计算设备实现动态配时控制 ```python # 信号周期优化算法示例 def optimize_cycle(flow_data): predicted_flow = transgpt.predict(flow_data) # 调用交通大模型 cycle_time = np.clip(predicted_flow*0.5 + 60, 40, 120) return cycle_time ``` 项目设备:唯众AI实训平台+摄像头模组+信号控制机[^2][^3] ### 二、公交智能调度实训平台 1. 通过车载IoT设备获取$loc(t)$实时位置数据 2. 建立客流预测模型:$$P_{n}(t) = \sum_{i=1}^{k} \alpha_i \cdot H_{i}(t) + \epsilon$$ 3. 开发可视化调度决策界面(含晚点预警功能) ### 三、智慧停车管理系统 ![智慧停车系统架构](https://via.placeholder.com/400x200?text=传感器+边缘计算+云平台) 实训组件包含: - 地磁传感器网络 - 车牌识别边缘计算盒 - 停车诱导屏控制模块 - 移动支付对接接口 ### 四、车路协同模拟系统 技术栈组成: ``` V2X通信模组 → 边缘计算单元 → 数字孪生平台          ↓      自动驾驶模拟器 ``` 可实现超视距预警、协同式自适应巡航等场景实训[^1] ### 五、交通事件检测分析平台 基于YOLOv5的交通事故检测流程: $$ \text{视频流} \xrightarrow{\text{边缘推理}} \text{特征向量} \xrightarrow{\text{分类模型}} \text{事件类型} $$ 训练数据标注要求: | 事件类型 | 样本数量 | 识别准确率 | |---------|---------|-----------| | 拥堵 | 5000 | 92.3% | | 事故 | 3000 | 88.7% |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路途…

点滴记录

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值