【嵌入式】AI落地部署技能

本文探讨了在嵌入式设备上部署AI模型的优化技术,包括模型结构调整、剪枝、蒸馏、稀疏化训练、量化训练QTA等方法,详细讲解了PyTorch的量化策略,并介绍了算子融合、计算图优化和底层内存管理等关键步骤,以实现高效、准确和稳定的模型运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 针对不同平台对生成的模型进行转换,也就是俗称的parse、convert,即前端解释器
  • 针对转化后的模型进行优化
  • 在特定的平台(嵌入端或者服务端)成功运行已经转化好的模型
  • 在模型可以运行的基础上,保证模型的速度、精度和稳定性
  • 用C++、cuda写算子(预处理、op、后处理等等)去实现一些独特的算子
  • 调bug、联合编译、动态静态库混搭
  • 好用的开源推理框架:Caffe、NCNN、MNN、TVM(移动端首选)、OpenVino(libtorch)、libtorch、PaddlePaddle
  • 好用的半开源推理框架:TensorRT(GPU服务器首选)
  • 好用的开源服务器框架:triton-inference-server
  • 基础知识:计算机原理、编译原理等

1. 模型结构

  • 使用现有的网络结构
  • 模型重参化: 训练时采用多分支的网络进行训练,尽可能利用多分支结构的优势来提升模型性能,而在使用时先进行一个等价转换,将多分支网络转换为一个单路网络,然后再进行推理使用ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路途…

点滴记录

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值